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38123 Povo (Trento), Italy, EU

received 30 July 2011; accepted in final form 6 September 2011
published online 7 October 2011

PACS 42.50.Ct – Quantum description of interaction of light and matter; related experiments
PACS 12.20.Ds – Specific calculations
PACS 12.20.-m – Quantum electrodynamics

Abstract – Cavities with periodically oscillating mirrors have been predicted to excite photon
pairs out of the quantum vacuum in a process known as the Dynamical Casimir Effect. Here
we propose and analyse an experimental layout that can provide an efficient modulation of the
effective optical length of a cavity mode in the near-infrared spectral region. An analytical model of
the dynamical Casimir emission is developed and compared to the predictions of a direct numerical
solution of Maxwell’s equations in real time. A sizeable intensity of dynamical Casimir emission is
anticipated for realistic operating parameters. In the presence of an external coherent seed beam,
we predict amplification of the seed beam and the appearance of an additional phase-conjugate
beam as a consequence of stimulated dynamical Casimir processes.

Copyright c© EPLA, 2011

Introduction. – On the basis of quantum field theory,
a neutral planar mirror moving with a non-uniform accel-
eration is expected to convert the zero-point fluctua-
tions of the quantum vacuum of the electromagnetic field
into real propagating photons [1]. This so-called Dynam-
ical Casimir Effect (DCE), predicted more than 30 years
ago, has proved extremely hard to experimentally observe
due to the extreme weakness of the emitted photon flux
for realistic configurations. Resonant enhancement of the
DCE intensity inside an optical cavity with oscillating
mirrors was investigated [2–5], still a sizable DCE emis-
sion requires a relativistic motion of the mirror, which is
almost impossible to obtain using material mirrors in real
mechanic motion.
To overcome this difficulty, alternative methods have

been explored, based on the modulation of the effective
optical length of the cavity. A scheme based on the
modulation of the skin depth of a semiconductor mirror
was proposed in [6] and is presently being experimentally
implemented [7]. Schemes based on coupling the cavity
mode to an emitter with time-dependent properties were
explored in [8,9]. The recent observation of a microwave
emission from a modulated SQUID into a superconducting
circuit has been considered as a first experimental evidence
of DCE [10]: as the phase of microwave reflection on the

(a)E-mail: d.faccio@hw.ac.uk

SQUID depends on the applied magnetic field, a spatially
moving mirror can be simulated by rapidly varying the
magnetic field imposed to the SQUID, which has been
predicted to lead to an appreciable DCE emission [11].
In the present paper, we theoretically explore a strategy

to observe the DCE in the optical domain by modulating
in time the refractive index of the medium filling the
cavity. This strategy to modulate the optical length of the
cavity, originally proposed in [12–14], has recently been
pushed further in [15] and bears a tight resemblance to
the concept of time refraction [16] and to recent efforts
at using optical analogues for the study of cosmological
particle creation and black-hole evaporation [17,18].
Even though all our conclusions qualitatively apply

to generic cavity configurations whose optical length is
modulated in time at a fast enough rate, quantitative
predictions are given for the specific case where a slab of
χ(3) nonlinear optical material is inserted in the cavity
and pumped with a periodic train of ultrashort opti-
cal pulses with an (angular) repetition rate Ω= 2π/T ,
T being the time separation of neighbouring pulses. As
a result, the cavity mode (of unperturbed frequency ωc)
experiences an effective refractive index of the nonlin-
ear slab which follows the instantaneous pump intensity
neff = n0+ δn(t) = n0+n2 Ip(t).
To quantitatively describe the DCE emission, a analyt-

ically solvable quantum optical model of the modulated
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Fig. 1: (Colour on-line) Upper panel: proposed experimental
scheme for studying the DCE. The optical cavity resides within
a photonic nanowire or waveguide and is externally excited
by a periodic laser pulse train that modulates the cavity
optical length through the nonlinear Kerr effect. DCE photons
are excited from the vacuum state and transmitted along
the waveguide which terminates with photon detectors. In
addition, the cavity may be seeded by a optical signal sent down
the waveguide from one end and detected at the other end.
Lower panel: simulated pulse train obtained by superimposing
the first four harmonics of a nanosecond Nd:YaG laser at a
fundamental wavelength of 1.064µm.

cavity is developed. Inserting in the model realistic values
of the parameters for a pump pulse train resulting from
the interference of several harmonics of a fundamental
laser beam at 1064 nm, an experimentally sizeable DCE
emission in the near-IR around a wavelength of 2μm is
predicted. Using the same model in the classical limit,
we then investigate the stimulated counterpart of the
DCE: in the presence of the refractive index modulation,
a seed laser beam incident on the cavity at a frequency ωs
gets coherently amplified and a phase-conjugated beam
appears at a specular frequency Ω−ωs. This mecha-
nism of parametric amplification turns out to be quite
efficient and may have interesting applications in future
photonic components as an efficient near or mid-infrared
amplifier.

The physical system. – The system we are studying
is based on an optical waveguide cavity as shown in the
schematic drawing in fig. 1. The cavity is embedded within
an optical waveguide, e.g., as a Bragg grating cavity [19].
A train of ultrashort, intense laser pulses separated by a
time interval T is sent externally on to the waveguide,
ideally at 90 deg. The laser pulses, coupled to the medium
through the χ(3) optical nonlinearity of the cavity mater-
ial, induce a periodic modulation of the effective refractive
index neff(t) = n0+ δn(t) = n0+n2 Ip(t), where n0 is the

refractive index of the unperturbed cavity mode, n2 is the
nonlinear Kerr coefficient (proportional to the χ(3) nonlin-
ear susceptibility) and Ip(t) is the instantaneous intensity
of the pulse train.
Using the typical value n2 = 3 · 10−16 cm2/W for fused

silica, pulses with a reasonable peak intensity on the order
of 1013W/cm2 will modulate the cavity refractive index
between n0 and n0+0.003, as recently measured in [18]. A
pulse train with the required intensities can be generated
by combining the first four harmonics of a nanosecond
Nd:YaG laser in a similar fashion to pulse train generation
techniques already demonstrated in the literature [20,21].
As shown in the lower panel of fig. 1, this will create
a train of pulses with sub-femtosecond duration and
spatially separated by the fundamental wavelength Λ=
1064 nm of the beam, which gives an (angular) repetition
rate Ω= 2πc/Λ= (2π) 0.3PHz. Less than 20mJ energy,
equally distributed between the four harmonics in a 1 ns
pulse, is sufficient to guarantee the required intensities
over a 170μm long cavity; longer cavities will require
proportionally higher pump intensities. Care should be
taken that the cavity transverse dimension is kept smaller
than the distance between each pulse so as to ensure that
only one pulse at a time modulates the cavity length.
Typical ridge waveguides, photonic crystal cavities or
photonic nanowires all satisfy this requirement and are
viable solutions. The time modulation of the refractive
index of the cavity will excite real 2μm photons out of the
vacuum state by DCE, which can be efficiently collected
at the output ports of the waveguide and detected with
state-of-the-art single-photon detectors: in contrast to the
microwave domain DCE experiments reported in [10,22],
thermal noise in the near/mid-infrared region considered
here is in fact strongly suppressed by the Boltzmann
thermal factor.

The theoretical model. – For the sake of simplicity,
we restrict our description to a single-cavity mode1 with
an electric-field profile,

Ec = E0c cos(kcz) e−(x
2+y2)/2σ2

c . (1)

fully contained within the fiber. The z-axis is oriented
along the cavity axis and σc is the mode waist in the
transverse x and y directions. For a cavity of length Lc
filled with a material of dielectric constant ǫc, the single-
photon amplitude is equal to E0c =

√

4�ωc/Lcσ2c ǫc.
The pump beam consists of a train of optical pulses

of duration τ separated by a much longer time interval
T ≫ τ , that propagate across the cavity at a speed vp along
the direction x, orthogonal to the cavity axis. The peak
electric-field amplitude is E0p . Along y and z, the pump has
a transverse Gaussian profile of wide waist σp≫ 1/kc, σc.
1DCE processes where the two photons are emitted into different

cavity modes are therefore not included in the model. In the usual
case of a weak DCE emission (i.e., for B≪Bthr), nonlinear couplings
are negligible, so that each mode evolves independently from the
others according to the linear Hamiltonian (3).
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In formulas, this corresponds to an electric-field profile
Ep(r, t) = Ēp(r, t) e

i(kpx−ωpt) with carrier frequency ωp,
carrier wave vector kp, and envelope

Ēp(r, t) =
∑

n

E0p e
−[x−vp(t−nT )]

2/2σ2 e−(y
2+z2)/2σ2

p . (2)

Here, the sum over n runs over the pulses forming the
train. σ= vpτ is the spatial length of each pulse within
the fibre material, which is assumed to be non-dispersive.
The Hamiltonian describing the dynamics of the single-

cavity mode under the nonlinear modulation δǫ(r, t) of the
dielectric constant induced by the pump train of pulses has
the form [23]

δH=−
∫

d3r
δǫ(r, t) [Ec(r)]2

8π

[

âc+ â
†
c

]2
=A(t)

[

âc+ â
†
c

]2
,

(3)
where âc and â

†
c are the destruction and creation operators

for photons in the cavity mode. The time dependence of
the effective coupling constant

A(t) =A0
∞
∑

n=−∞

e−(t−nT )
2/τ̄2 (4)

then consists of a train of peaks of height

A0 =−
√
π

2

δnpeak

n0
�ωc
σp
Lc

σ

vpτ̄
(5)

and effective duration

τ̄ =
√

σ2c +σ
2/vp (6)

that result from the spatial overlap of the cavity mode with
the pump beam. Note that the effective duration τ̄ can be
significantly longer than the pulse duration τ as soon as
the waist σc of the cavity mode exceeds the pulse length
σ= vpτ . The peak modulation of the refraction index is

δnpeak = n2I
peak
p =

cn2
2πn0

|E0p |2. (7)

The Fourier transform of A(t) consists of a comb of δ-
peaks spaced by the repetition rate 2π/T and multiplied
by a broad Gaussian envelope of width proportional to the
inverse pulse duration τ̄−1,

Ã(ω) = 2π
3/2τ̄A0
T

∞
∑

j=−∞

δ

(

ω− 2π
T
j

)

e−ω
2 τ̄2/4. (8)

In the following we shall neglect the small nonlinear
frequency shift of the cavity mode due to the â†câc terms
in (3) and concentrate our attention on the processes
where two cavity photons are either created or destroyed
by Hamiltonian terms proportional to (â†c)

2 or â2c . These
processes are strongest when one of the components
of Ã(ω) is close to resonance with twice the cavity
mode frequency. From now on, we shall assume that this

condition is approximately met for the j-th component
at Ω̄ = jΩ≃ 2ωc and that the spacing Ω= 2π/T between
components is much larger than the cavity mode linewidth
γc. Under these assumptions, we can restrict our attention
to the single resonant component at Ω̄ and neglect all the
others,

A(t) = π
1/2τ̄A0
T

∞
∑

j=−∞

e−2πijt/T e−(πjτ̄/T )
2

≃
√
πA0τ̄
T

e−Ω̄
2 τ̄2/4 e−iΩ̄t+c.c.= �Be−iΩ̄t+c.c. (9)

This leads to the final form for the isolated cavity
Hamiltonian,

H0 = �ωcâ
†
câc+ �B (e−iΩ̄tâ†2c + eiΩ̄tâ2c). (10)

For strong enough modulations 2B> Ω̄/2−ωc, the
Hamiltonian (10) for the isolated, lossless cavity predicts
that the number of cavity photons exponentially grows in
time at a rate

Γ= 2

√

4B2−
(

Ω̄

2
−ωc
)2

; (11)

this exponential amplification of the cavity field will be
recovered in the section about numerical calculations using
an ab initio FDTD simulation of the electromagnetic field
under a time modulation of the dielectric constant.
To go beyond this very idealized model and be able to

describe the steady state of realistic cavities, one has to
include radiative and non-radiative losses and, possibly,
the external driving of the cavity by means of incident light
beams. In standard treatments [24,25], the Hamiltonian
for a single-cavity mode coupled to external light sources
is written in the form

H =H0+ �κc
[

Einc(t) â
†
c+E

∗
inc(t) âc

]

, (12)

where Einc(t) is the amplitude of the coherent laser field
incident on the cavity and κc is a coefficient quantifying
the coupling of the incident radiation to the cavity mode.
Losses are then included at the level of the master equation
for the density operator

∂tρ=−
i

�
[H, ρ] +

γc
2
{2âcρâ†c− ρâ†câc− â†câcρ}. (13)

Analytical predictions. – Standard quantum optical
techniques such as the input-output formalism or the semi-
classical Wigner representation of the quantum field âc can
be used to obtain exact predictions for the most significant
observables in the steady-state reached by the cavity under
the interplay of the Casimir modulation, the losses, and
possibly a coherent incident laser beam [24,25].
In the absence of a coherent drive Einc = 0, the conver-

sion of zero-point quantum fluctuations into real photons
by the temporal modulation at frequency Ω leads to a
DCE emission of photons at a rate

ΦDCE =
2γcB2

γ2c/4− 4B2+(ωc− Ω̄/2)2
. (14)
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(a)

(b)

Fig. 2: (Colour on-line) Relative intensity of the transmitted
(panel (a)) and phase-conjugated (panel (b)) beams as a
function of the seed frequency ωs. Black solid lines: Ω̄ = 2ωc,
B/γc = 0.05. Red dashed lines: Ω̄ = 2ωc, B/γc = 0.15. Blue
dotted lines: Ω̄− 2ωc = 2γc, B/γc = 0.3.

As expected, this rate vanishes in the absence of any
modulation B= 0 and is strongest at the DCE resonance,
Ω̄≃ 2ωc. The divergence of the emission rate for

B→Bthr =
1

2

√

γ2c
4
+

(

ωc−
Ω̄

2

)2

(15)

signals the threshold for coherent oscillation in the cavity
by a mechanism which is the dynamical Casimir analog
of parametric oscillation. A related parametric oscillation
effect via DCE was observed in [22] using a superconduct-
ing circuit cavity whose electric length is modulated in a
fast and periodic way by an external magnetic field driving
the terminating SQUID.
When a coherent seed Einc(t) =E

0
s e
−iωst is incident on

a modulated cavity at a frequency ωs close to the cavity
resonance at ωc, a straightforward solution of the classical
equations of motion for the field amplitude shows that
the transmitted light on the opposite side contains two
coherent components in addition to the DCE emission: the
incident seed beam at ωs gets amplified via the stimulated
counterpart of the DCE; its coherent scattering off the
temporally modulated refractive index generates a new
beam at a frequency Ω̄−ωs specular of ωs with respect
to Ω̄/2. For a symmetric cavity, the two emerging beams
have amplitudes

Et =
γc/2

ωs−ωc+ iγc2 + 4B2

ωs+ωc−Ω̄+i
γc

2

Es, (16)

Epc =
−Bγc

(ωs−ωc+ iγc2 )(ωs+ωc− Ω̄+ i
γc
2 )+ 4B2

E∗s . (17)

Examples of the ωs-dependence of their intensities are
plotted in fig. 2 for different values of the modulation
amplitude B and of the detuning Ω̄− 2ωc.
In the absence of modulation B= 0, the amplitude Et

of the first component (fig. 2(a)) reduces to standard
resonant transmission through the cavity: it is complete on

resonance ωs = ωc and the resonance peak has a linewidth
γc. For finite modulations B, the transmitted intensity
can grow above one, which signals the onset of stimulated
DCE processes. For increasing values of the modulation
amplitude B, the resonance peak in the ωs-dependence
of the transmission becomes sharper and the linewidth
of the amplification peak tends to zero as the oscillation
threshold is approached2.
A similar ωs-dependence is apparent in the amplitude

Epc of the phase-conjugated beam that emerges from the
cavity at the specular frequency Ω̄−ωs (fig. 2(b)). As
expected, Epc vanishes in the absence of any modulation
B= 0. For Ω̄ = 2ωc, the ωs-dependence shows a single peak
at ωc: the peak height is a growing function of B and the
linewidth shows a narrowing phenomenon as B→ γe/4.
In the presence of a finite detuning of the modulation
Ω̄− 2ωc �= 0, the transmission peak splits at low B into
a doublet, one peak being close to ωc, the other peak
being close to Ω̄−ωc. As B is increased, the peaks move
closer to each other and finally merge. As the threshold
is approached, the splitting transfers into the imaginary
parts as in the Ω̄ = 2ωc case.
We conclude this section with some quantitative

remarks about the actual intensity of the emitted DCE
radiation. To this purpose, we insert realistic parameters
into the expression (14) for the photon flux emerging from
the cavity. From the definition of B in (9), it is immediate
to see that the result is dominated by the Gaussian
exp(−Ω̄2τ̄2/4) and a critical condition to have an appre-
ciable photon generation is that that τ̄ � 2/ωc = τc/π: the
effective duration τ̄ of the Gaussian pump pulses in the
cavity has to be comparable or shorter than the optical
period τc of the cavity mode. Otherwise, the cavity mode
sees the modulation of the index as almost adiabatic and
remains in the ground state with no photons. On this
basis, it can be advantageous to tune the repetition rate
close to twice the cavity frequency, Ω≃ 2ωc, so to work
with the fundamental component of A(ω) for which the
Gaussian factor is least crucial.
Moreover, for a given value of δnpeak and a fixed

τ/T , the ωc factor in (5) suggests it is advantageous to
shift the cavity frequency ωc (and correspondingly the
repetition rate Ω) towards shorter wavelengths, e.g., in
the visible domain. Indeed the number of cavity photons
is predicted (in the lossless case described by eq. (11)
and considered in the numerical calculations of the next
section) to grow exponentially with B ∝ ωc. However, there
is a trade-off between increasing the frequency and the
actual possibility to achieve the necessary modulation
rates. Trains of ∼1 fs pulses with a few micron period-
icity have been demonstrated and sub-fs durations with

2Simple algebraic manipulations show that Et(ωs) and Epc(ωs)
exhibit a pair of resonant transmission poles as a function of ωs. In
the simplest case Ω̄ = 2ωc, the two poles are at ωc− i(γc/2− 2B) and
ωc− i(γc/2+2B). In particular, note how the imaginary part of the
first pole tends to zero when approaching the parametric threshold
B→ γc/4.
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1 micron periodicity should be relatively easily generated
as discussed above. However, shorter periodicities would
require shifting the spectrum further into the UV region,
thus encountering issues with material absorption and a
general difficulty in obtaining high-energy pulses, e.g., at
the fourth harmonic of an 800 nm laser pulse. We therefore
believe that, whilst the laser source scheme adopted here
is perfectly reasonable, it does also seem to be the limit
allowed by current technology.
Realistic values for the pump train of pulses can be

summarized as follows: combining the first four harmonics
of the fundamental wavelength at Λ= 1μm, a pulse
duration on the order τ = 1 fs can be obtained. Realistic
values for the cavity parameters can be δnpeak = 0.003,
σp/Lc = 0.5, γc = 6 · 1011 s−1 and σc = 0.5μm, which leads
to the quite optimistic prediction ΦDCE ∼1010 s−1 for the
emitted photon flux3. Assuming that the laser pulse train
lasts for 1 ns, we predict a DCE photon emission rate of
the order of 10 photons/pulse that holds strong promise
for detection. And it is worth noting the value of B is also
not far below the threshold value Bthr for DCE parametric
oscillation.

Numerical calculations. – The calculations of the
previous section were based on a quantum optical descrip-
tion of the evolution of the field amplitude in a single-
cavity mode coupled to a dissipative bath of external
radiation modes. A most significant advantage of this
approach is the possibility of including nonlinearities in
the model, so to describe the back-action effect of the DCE
onto the external modulation [26,27].
In this section we outline a different strategy to theoret-

ically study the DCE, based on the FDTD solution of the
classical Maxwell equations with a time-dependent refrac-
tive index. Zero-point noise in the initial quantum vacuum
state is included in a phenomenological way via a noisy
initial condition. A key advantage of this approach is that
it is able to follow the system evolution in real time and
therefore quantify the actual time scale over which the
DCE gain can be observed. Another promising point is
the possibility of extending the calculation to cavities of
arbitrary geometry, so to fully include effects stemming
from the multi-mode nature of the field.
We start by considering the simplest geometry of a

spatially homogeneous cavity material of refractive index
n0 = 1.5 enclosed between perfectly reflecting cavity
mirrors. These are simulated by imposing perfectly
reflecting boundary conditions to the field [28]. The
cavity index is made to sinusoidally oscillate with an
amplitude δn and a seed pulse is inserted as an initial
condition. Figure 3 shows an example for δn= 0.003 and
a Lc = 2μm long cavity with a seed pulse wavelength
resonant with the cavity mode that has a wavelength
(in vacuum) λc = 2μm and excited under the resonance

3Note that for a propagation speed vp � c, a pulse duration of 1 fs
corresponds to a length σ� 0.33µm. An important contribution to
τ̄ then comes from the mode waist σc.
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Fig. 3: (Colour on-line) Numerical simulations for a cavity
excited exactly on resonance: Ω= 2ωc = (2π)0.3PHz, δn=
0.003. Snapshots (a) of the electric-field inside the cavity for a
series of increasing times and field intensity vs. time (b) for a
cavity of length Lc = 2µm. (c) Logarithmic gain vs.modulation
frequency Ω for three different cavity lengths, 8µm (solid line),
10µm (dashed line), 16µm (dotted line). The modulation is
always taken on resonance with a cavity mode, Ω= 2ωc.

condition Ω= 2ωc. In fig. 3(a) we show the increasing
electric-field amplitude for different times and in fig. 3(b)
we show the field intensity inside the cavity as a function
of time. In fig. 3(c) we show the logarithmic gain,

G= 10
d

dt
log10

[ |E(t)|2
|E(0)|2

]

, (18)

for three different cavity lengths Lc and varying modula-
tion frequency Ω: as expected from the model, the gain
does not depend on Lc. On the other hand, as Ω is
increased, a linear increase of the gain, implying an expo-
nential increase of the field intensity inside the cavity is
observed, in agreement with the analytical calculations.
In fig. 4 we show another simulation in which we insert

noise as an input condition: this phenomenological way of
including in a classical FDTD simulation the zero-point
fluctuations of the field in its quantum vacuum state can
be made rigorous in terms of quantum Langevin equations
or using the Wigner representations of the quantum
field [24,25]. Figure 4 shows the initial spectrum (t= 0ps)
and the spectrum after 10 and 13 ps (panel(a)), and
the electric-field distribution at different times (panel(b):
the thin black line shows the initial “noise” condition)
with δn= 0.003 and Λ= 2πc/Ω= 1μm. A single peak is
clearly amplified at the resonance condition ωc =Ω/2 =
(2π)0.15PHz. The fact that a steady exponential growth
sets in after just ∼10 ps, as seen in fig. 4(c) is an important
indication of the accuracy of the analytical single-mode
model.
Finally, in fig. 5 we show a simulation in which we

substitute the perfect cavity mirrors used above with
Bragg grating mirrors: the cavity is thus composed of two
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field amplitude at t= 30ps. The cavity index is modulated
at Ω= (2π) 0.3PHz and δn= 0.003. (b) The field intensity
evolution with time inside the cavity.

30 layer Bragg reflectors (sinusoidal refractive index vari-
ation between 1.45 and 1.55) that enclose a 170μm long
cavity that has n0 = 1.5 and δn= 0.003. The cavity length
was fine-tuned so as to exhibit a resonance at 2μm wave-
length. The cavity and the electric-field distribution at the
end of the simulation are shown in fig. 5(a). The inten-
sity evolution inside the cavity modulated at resonance
(Λ= 1μm) is shown in logarithmic scale in fig. 5(b): after
∼10 ps a steady growth regime is reached with a rate of
∼ 4 dB/ps. The oscillations in the field intensity appear
to be related to the beating of the modulation with the
propagation of the pulse back and forth in the cavity with
a periodicity that depends on the cavity length. With very
short cavities this effect is not observable, but longer cavi-
ties lead to this characteristic beating with a periodic

cavity modulation. Similar behavior is obtained with a
wide range of input parameters (e.g., cavity lengths, δn).

Conclusions. – In conclusion, we have proposed and
quantitatively characterized an experimental scheme for
measuring the dynamical Casimir effect: the effective opti-
cal length of a cavity is varied in time on a PHz time scale
by means of a train of ultrashort pulses that modulate the
effective refractive index of the cavity material. For real-
istic pulse train and cavity parameters, the rate of photon
emission can be as high as 10 photons/pulse.
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