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Self-bound droplets of light with orbital angular momentum
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Systems with competing attractive and repulsive interactions have a tendency to condense into droplets.
This is the case for water in a sink, liquid helium, and dipolar atomic gases. Here we consider a photon fluid
which is formed in the transverse plane of a monochromatic laser beam propagating in an attractive (focusing)
nonlocal nonlinear medium. In this setting we demonstrate the formation of the optical analog of matter-wave
droplets and study their properties. The system we consider admits droplets that carry orbital angular momentum.
We find bound states possessing liquidlike properties, such as bulk pressure and compressibility. Interestingly,
these droplets of light, as opposed to optical vortices, form due to the competition between long-range s-wave
(monopole) and d-wave (quadrupole) interactions as well as diffraction.
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I. INTRODUCTION

Droplet formation is ubiquitous in nature, its occurrence
ranging from classical fluids, such as liquid water in normal
conditions, to quantum many-body systems, such as liquid he-
lium [1] or atomic mixtures [2–5]. In either scenario, the sta-
bilization of droplets, which are self-bound states, is typically
driven by the competition between attractive and repulsive
forces between the microscopic constituents of the system. In
quantum mechanics, purely attractive forces may still favor
droplet formation due to quantum effects. This is the case for
zero-range interacting bosonic systems in the universal and
few-body limit at zero temperature in two spatial dimensions
[6,7]. Renormalization effects in the only coupling constant of
the system provide the necessary length scale, closely linked
to the droplet’s size, which in turn provide a mechanism
for stabilization of quantum droplets. More recently, droplets
and gas-liquid or gas-droplet transitions in (dipolar) atomic
systems have been observed in several groundbreaking ex-
periments [2–4,8,9]. Although the stabilization mechanism in
dipolar atomic systems is due to purely quantum-mechanical
beyond-mean-field effects [10–14] that require large particle
numbers, three- and many-body forces are known to be capa-
ble of stabilizing droplets in an otherwise collapsing system
[15,16] and may be the reason for the liquid to Luttinger
liquid transition in one-dimensional 4He [17]. In addition, we
should note that the quantum-mechanical stabilization can be
modeled by a classical potential in the effective-field-theory
sense, as is done in Ref. [3].

The most prominent example of natural quantum droplets
is large nuclei, some of which have a ground state and
part of their excitations well accounted for by the liquid
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drop model [18]. Droplet formation is however also present
in many other systems, with both local and nonlocal (e.g.,
power-law) interactions [2–4,6,11,12,16,19,20]. In the context
of atomic matter waves and nonlinear optics, solitons, not
droplets, are a much more common phenomenon and have
been observed in a variety of scenarios (see Refs. [21–24]
and references therein). Solitons are stationary states that arise
in integrable systems from the balance between the kinetic
energy (i.e., diffraction) and nonlinear interactions. For these
to be stable, fine-tuned shapes and densities are required.
Droplets, on the other hand, are dynamical objects that can be
defined as self-bound finite-size objects that are stable against
perturbations in size, shape, and density due to a competition
of attractive and repulsive forces. This is the definition we will
use hereafter.

The connection between droplets and solitons in nonlinear
optics has been highlighted by Michinel et al. [25,26], who
showed the formal analogy between bosons with competing
two- and three-body forces and light in cubic-quintic nonlin-
ear media, forming what they called liquid light. Moreover,
in the context of long-range interactions, similar states have
been referred to as nonlocal solitons [27–42], dipole solitons
[43–45], and when rotations are present, azimuthons [46].

In this work we draw the connection between matter-wave
droplets and bound states in nonlinear optics with orbital
angular momentum (OAM) aiming to explain the underly-
ing mechanisms of the latter. Using the language of atomic
quantum fluids, we investigate the properties, underlying
mechanisms of formation, and the dynamics of these bound
states in detail. We show that they are stable against size
and shape perturbations due to a competition between long-
range s-wave and d-wave forces. While the competing forces
are of a different form compared to that of atomic liquids,
we nonetheless find that liquidlike properties, such as bulk
pressure, compressibility, and a speed of sound can be defined
in the system.
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The paper is structured as follows. In Sec. II we define the
optics–matter-wave analogy, followed by Sec. III, where the
pseudoenergy of bound states is calculated and a different
type of expansion for long-range interactions is introduced.
In Sec. IV we specifically consider the p-wave state, the
liquidlike properties of which are explored in Sec. V. The
dynamics of a perturbed p-wave state is then explored in
Sec. VI. We summarize in Sec. VII.

II. OPTICS–MATTER-WAVE ANALOGY

We consider the transverse plane of a monochromatic laser
field, for which the photons are effectively massive and two
dimensional. Nonlinearities can be induced by a nonlinear
optical medium in such a way that a photon fluid is formed
where superfluidity has also been observed with a repulsive
(defocusing) nonlinearity [47–51]. Here the direction of prop-
agation z plays the role of time t in quantum mechanics.
We concentrate on nonlocal photon fluids [52–54], where the
nonlinearity is long range, formed in the transverse plane
of a laser beam propagating in a thermo-optic medium, for
which the change in refractive index �n is induced by heat
absorption in the medium. Importantly, we are interested in
systems with an attractive (focusing) nonlinearity. Superfluid
behavior is thus not expected. As we will show, liquidlike
behavior is however present. We will work with slowly vary-
ing electric-field envelopes E(r, z), well described within the
paraxial approximation to the wave equation [55],

i
∂E

∂z
= − 1

2k0
∇2E − k0

n0
�nE − iα

2
E ≡ H∗, (1)

where ∇2 is the Laplacian in the transverse plane [r =
(x, y)]. In Eq. (1), the wave number k0 is given by k0 =
2πn0/λ, with n0 the background refractive index of the
medium and λ the wavelength of the beam, while α is the
linear absorption coefficient of the medium. The change in
refractive index �n is a nonlinear functional of the electric-
field envelope

�n[E,E∗] = γ

∫
d2r ′R(r − r′)|E(r′, z)|2, (2)

where γ = αβσ 2/κ , with β, κ , and σ the thermo-optic co-
efficient, thermal conductivity, and nonlocal length of the
medium (set by the physical size), respectively, and R(r) the
medium’s thermo-optical response function [53,54,56]. The
response function of the nonlinear medium is well approxi-
mated using the distributed loss model, which gives R(r) =
K0(|r|/σ )/2πσ 2 [54], with K0 the modified Bessel function
of the second kind of order zero.

The analogy between matter waves and nonlinear optics is
drawn by identifying E with the condensate order parameter
ψ , and γR with the interaction potential V . Full analogy with
a closed atomic system is achieved for negligible absorption
α, which is the situation we consider here. As we will see,
both pseudoenergy H∗ and pseudochemical potential μ∗ arise
from the conserved quantities of the photon fluid, which will
be defined analogously to matter waves. It is easy to see that
Eq. (1), neglecting absorption, can be obtained by minimizing

the following Lagrangian density with respect to E∗:

L = E∗
(

i∂z + ∇2

2k0
+ k0

2n0
�n

)
E. (3)

Naturally, due to the z-translational invariance of L, the
Hamiltonian

H∗ =
∫

d2r E∗
(

− ∇2

2k0
− k0

2n0
�n

)
E (4)

=
∫

d2r

(
1

2k0
∇E∗(r, z) · ∇E(r, z)

− k0

2n0
�n(r, z)E∗(r, z)E(r, z)

)
(5)

is a conserved quantity. We will refer to Eq. (4) as the
pseudoenergy of the photon fluid, in analogy to matter waves.
Importantly, another conserved quantity is the power P , which
will play the role of the number of atoms N . That is,

P =
∫

d2r |E(r, z)|2 (6)

is constant in propagation. We can now define the pseudo-
chemical potential μ∗ by minimising the pseudoenergy with
Eq. (6) as a constraint. In other words, we want to minimise

X[E∗(r, z), E(r, z)] = H∗ − μ∗
∫

d2r E∗(r, z)E(r, z).

(7)

Using the pseudoenergy as defined through Eq. (4), we find

δX

δE∗ = − 1

2k0
∇2E − k0

n0
�nE − μ∗E = 0 (8)

and thus we can define the pseudochemical potential by

μ∗E =
[
− 1

2k0
∇2 − k0

n0
�n

]
E = H∗E, (9)

where H∗ is the pseudoenergy density. This can also be seen
as the eigenvalue of the Hamiltonian-density operator H∗ and
as such we can make the Ansatz E(r, z) = E(r)e−iμ∗z to
obtain the original equation of motion in Eq. (1). From this
treatment, it also follows that

μ∗ = ∂H∗
∂P

, (10)

similarly to the chemical potential of a condensate, but where
P → N . Note that this is not a chemical potential with
respect to the number of photons, but with respect to the
power contained in the beam. It represents the amount of
pseudoenergy you add to the system by increasing the power
by an infinitesimal amount δP .

III. PSEUDOENERGY OF BOUND STATES

We are interested in bound states and will use an Ansatz
that generalizes the nonrotating results of Hammer and Son
[6]. As we will see, in the process of evaluating the pseudoen-
ergy, we will develop a different type of expansion for highly
nonlocal interactions.

For the ground state we have E(r, z) =
Ep(r) exp(−iμ∗z), with μ∗ the pseudochemical potential.
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The power-normalized Ansatz takes the form

Ep(r) =
√

P√
CrCφξ

f (r/ξ )�(φ), (11)

where ξ is a length scale associated with the radial size of
the bound state, f is a real-valued radial function, and �

encodes the angular dependence. The normalization constants
are Cr = ∫ ∞

0 ds sf 2(s) and Cφ = ∫ 2π

0 dφ|�(φ)|2. In the fol-
lowing, we work with angular functions � that only contain
� = ±1 OAM, that is, �(φ) = exp(iφ) + δ exp(−iφ), with
δ a dimensionless constant. In other words, δ is the ratio of
OAM � = −1 to OAM � = 1. We will now proceed to evalu-
ate the Hamiltonian term by term for the bound-state Ansätze
of the form (11), as through this we will ultimately find stable
shape and size configurations in the usual variational manner.
Note that in this, the shape function f (s) is a functional
variational parameter.

A. Kinetic pseudoenergy

Let us start with the kinetic part of the pseudo-
Hamiltonian (4). We want to calculate the expectation value
of the pseudoenergy 〈H∗〉, using Eq. (11) as an Ansatz. This
yields

H (1)
∗ = P

2k0Crξ 2

[
A1 + A2Am

Cφ

]
= PC1

2k0ξ 2
, (12)

with dimensionless constants defined as A1 = ∫ ∞
0 ds s( df

ds
)2,

A2 = ∫ ∞
0 ds( f 2

s
), Am = ∫ 2π

0 dφ| d�
dφ

|2, and C1 = 1
Cr

[A1 +
A2Am

Cφ
]. Here A1 and Am originate from the usual Laplacian

of the kinetic Hamiltonian and A2 accounts for the centrifugal
barrier.

B. Interaction pseudoenergy

As we will see in the following, analytically solving the
necessary integrals for the expectation value of the pseudoen-
ergy, in Eq. (4), with Ansätze of the form in Eq. (11), is not
possible due to the form of the nonlocal response function
R. In our case, the bound state is tightly bound [i.e., σ � ξ ;
see Fig. 1(a)] and the commonly used low-energy (gradient)
expansion of R is therefore not appropriate.

Nonetheless, let us first consider the nonlocal refractive
index (2) in the σ � ξ limit, in order to gain some intuition.
Also, let us denote the intensity, or power density, as ρp(r) =
|Ep(r)|2. It follows that

�n(r) = γ

∫
d2k

(2π )2
e−ik·rR(k)ρp(k)

= γ

∫
d2k

(2π )2
e−ik·r ρp(k)

1 + σ 2k2


 γ

∫
d2k

(2π )2
[1 − σ 2k2]e−ik·rρp(k)

= [
γ + γ σ 2∇2

r

]
ρp(r), (13)

where the first step follows from the Fourier transform of the
modified Bessel function K0. This is called the effective range
expansion in scattering theory [57], or pionless effective-field

FIG. 1. (a) Normalized intensity of a p-wave droplet at P = 1
W input power and an equal superposition of � = ±1 orbital angu-
lar momentum. (b) Corresponding normalized nonlocal interaction
potential �n.

theory in nuclear physics [58], and is valid for nonlocal
interaction lengths σ much smaller than the characteristic con-
densate size ξ . Physically, this low-energy expansion assumes
that the exchange momentum carried by R(k) is much smaller
than the condensate momentum ρp(k).

However, we are interested in the σ � ξ regime. We can
nonetheless do a similar expansion, which we detail below.
We still consider the momentum space picture. As σ � ξ , it
follows from line 2 of Eq. (13) that the exchange momentum k

is effectively amplified by the nonlocal length. Therefore, the
momentum integral is dominated by R(k) and we may use
a low-momentum expansion for the photon fluid momentum
ρp(k). This translates to an effective multipole expansion of
the nonlocal refractive index

�n(r) = γ

∫
d2k

(2π )2
e−ik·rR(k)ρp(k)

=
∫

d2k

(2π )2
e−ik·rR(k)

∫
d2r ′eik·r′

ρp(r′)

= γ

∫
d2r ′

[
1 − x ′

α∂α
r + 1

2
x ′

αx ′
β∂α

r ∂β
r

]
ρp(r′)

×
∫

d2k

(2π )2
R(k)e−ik·r

= γ

[
P − dα∂α

r + 1

2
Qαβ∂α

r ∂β
r

]
R(r). (14)

We will refer to this expansion as the long-wavelength ap-
proximation (LWA).1 Here we expand the plane wave eik·r′

to identify the relevant momentum modes that contribute to
the nonlocal refractive index. We should note that in order
to make an accurate approximation, our reference coordinate
system must be aligned with the droplet. Also, a prime im-
plies the primed coordinates, ∂α

r = ∂
∂xα

, and a (+,+) Einstein
summation is implied. For this expansion, we have defined the

1Note that we can connect this to the Snyder-Mitchell approxima-
tion as this amounts to only keeping the s-wave term in the LWA and
then further approximating the medium response as a quadratic.
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dipole moment

dα =
∫

d2r ′x ′
αρp(r′) (15)

and the quadrupole moment

Qαβ =
∫

d2r ′x ′
αx ′

βρp(r′). (16)

The dipole moment of the Ansatz in Eq. (11) vanishes
identically (d = 0). The quadrupole moment, on the other
hand, is nonzero along its diagonal. Substituting the Ansatz
(11) into the definition of the quadrupole moment, we obtain

Qν,ν = Pξ 2

CrCφ

Qrqν,ν,

where we have defined Qr = ∫ ∞
0 ds s3f 2(s), q1,1 =∫ 2π

0 dφ cos2 φ|�(φ)|2, and q2,2 = Cφ − q1,1. In total, we
find that the self-induced refractive index is given by

�n(r) = γP
K0(r/σ )

2πσ 2
+ γQ12 sin(2φ)

K2(r/σ )

2πσ 4

+ γQ11

2

[
cos2(φ)K0(r/σ )

2πσ 4
+ cos(2φ)K1(r/σ )

2πσ 3r

]

+ γQ22

2

[
sin2(φ)K0(r/σ )

2πσ 4
− cos(2φ)K1(r/σ )

2πσ 3r

]
.

(17)

Note that the d-wave term (proportional to Qij ) can take
negative values, providing an effective repulsion mechanism,
and thus the competing forces that promote stable droplet
formation, in stark contrast with the s-wave case.

Finally, we can use Eq. (17) together with our droplet
Ansatz (11) to evaluate the nonlocal interaction part of the
Hamiltonian (H (2)

∗ ), yielding

H (2)
∗ = − k0

2n0

∫
d2r �n(r)|Ep(r)|2

= − k0Pγ

2n0CrCφ

{
PCφQK0

r (ξ, σ )

2πσ 2
+ Pξ 2QrQ

K0
r (ξ, σ )

4πσ 4CrCφ

× [
q2

11 + q2
22

] + PξQr (Qcos
φ )2QK1

r (ξ, σ )

4πσ 3CrCφ

+ Pξq12QrQ
sin
φ QK2

r (ξ, σ )

2πσ 4CrCφ

}
, (18)

where we have defined the dimensionless constants
Qr = ∫ ∞

0 ds s3f 2(s), q11 = ∫ 2π

0 dφ cos2(φ)|�(φ)|2, q22 =∫ 2π

0 dφ sin2(φ)|�(φ)|2, Qcos
φ = ∫ 2π

0 dφ cos(2φ)|�(φ)|2, and

Qsin
φ = ∫ 2π

0 dφ sin(2φ)|�(φ)|2, as well as the dimen-
sionless functions QK0

r (ξ, σ ) = ∫ ∞
0 ds sK0(sξ/σ )f 2(s),

QK1
r (ξ, σ ) = ∫ ∞

0 ds K1(sξ/σ )f 2(s), and QK2
r (ξ, σ ) =∫ ∞

0 ds sK2(sξ/σ )f 2(s). We explore the regions of validity
for this approximation in Appendix A.

IV. STABLE CONFIGURATIONS

We have now developed a variational expression for the
pseudoenergy for bound state Ansätze. Let us in this section

explore the physics further and discuss stable bound states.
For the case of zero OAM, the ground state of the pseudoen-
ergy functional, after fixing the average power P = 〈|E|2〉
(or particle number in the matter-wave language), is a single
circular bound state. This is well approximated by the model
of Snyder and Mitchell [27] in which the nonlinear refractive
index is given by a parabolic function. For reasons that will
become apparent, we will refer to this as the s-wave bound
state.

With nonzero OAM, however, the ground state is no longer
that of the s-wave state and as we will show in this section
that the system instead settles to a symmetry-protected stable
state which at a first glance looks like that of two distinct
lobes. This state, however, truly is a single bound state and we
will refer to it as a p-wave bound state. Such a state cannot
be described within the Snyder-Mitchell framework. Since
our system conserves angular momentum, superpositions of
� = ±1 modes of the electric field cannot transition into the
trivial s-wave state in the absence of any perturbations. In the
case of an equal superposition of � = +1 and � = −1 modes,
which has zero OAM, the p-wave state is nonetheless stable as
it carries a different symmetry than the s-wave state. This state
also cannot fly apart, as the interaction length is much larger
than the typical distance between the lobes. Therefore, if these
superpositions can find a stable pseudoenergy minimum, they
will form bound states that are experimentally feasible to
observe. To show that this is the case, we perform a Wick
rotation z → iτ in the wave equation (1) and solve it with
initial conditions of the type E(r, 0) ∝ E(r )[eiφ + δe−iφ].

In Fig. 1(a) we present the result of imaginary time propa-
gation of Eq. (1) for the intensity distribution with input power
P = 1 W, showing that indeed the stable pseudo-ground-state
configuration is a p-wave self-bound state. The formation of
the bound state can be attributed to the formation of a double-
well-like potential �n, as seen in Fig. 1(b). There are two
significant features that we immediately infer from Fig. 1(a).
First, the zero at the origin is a consequence of the centrifugal
barrier ∼�(� + 1)/r2. Second, the two-lobe structure suggests
that the stable configuration has an equal, in absolute value,
superposition of � = ±1 modes. Pure � = 1 or � = −1 modes
would exhibit a ringlike intensity pattern, which we will show
is unstable in the following.

We choose f (s) = se−s in Eq. (11), where we have
verified that this exponential form gives lower pseudoenergy
in the d-wave channel than a variety of other forms such as
Gaussian functions. In Fig. 2 we show the energy landscape
produced by the Ansatz (11) as a function of |δ| and ξ . As can
be clearly observed in Fig. 2, the minimum of pseudoenergy
occurs at |δ| = 1 (zero-net OAM), indicating the formation
of a two-peaked intensity pattern, while the ring-shaped pure
±1 OAM (|δ| = 0) configuration has the highest energy and
is highly unstable. We note here that the Snyder-Mitchell
approximation gives the minimum of pseudoenergy for
|δ| = 0, discussed in Appendix B, in stark contrast
with numerical simulations and variational calculations
within the LWA (see Fig. 2 and also Ref. [37]).
We point out that the d-wave quadrupole term is in
competition with the s-wave monopole term. This
is the competition of forces that promotes liquidlike
behavior.
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FIG. 2. (a) Pseudoenergy surface of the droplet as a function
of the droplet size ξ and |δ| as given by H∗ for P = 2 W. Note
the global minimum at |δ| = 1 and at the finite size ξ = ξ∗. (b)
Pseudoenergy per unit power (blue solid line) and binding energy
contribution (green dashed line) for P = 2 W and |δ| = 1 as a
function of bulk density (peak power). (c) Corresponding inverse
compressibility K−1.

V. LIQUIDLIKE PROPERTIES

As alluded to earlier, liquidlike features emerge in this
system. The pseudoenergy per unit power (EOP), analogous
to energy per particle, has a minimum at bulk density (i.e.,
peak intensity) ρ∗ = P/CrCφξ 2

∗ , where ξ∗ is the value of ξ

at the pseudoenergy minimum observed in Fig. 2(a). This can
be seen in Fig. 2(b). Expanding around this minimum up to
quadratic order in peak intensity ρ0 = P/CrCφξ 2, we find the
EOP

H∗
P

= −|B0| − 3πCφ

16k0P
ρ0 + 9πC2

φn0

64k3
0γP 3

σ 2ρ2
0 , (19)

where B0 is analogous to the binding energy2 of the bound
state at zero density with respect to the (P − 1)-particle
threshold in the many-particle language. This gives us direct
insight into the formation mechanism: Local interactions in
the system give rise to the linear term, promoting collapse,
which is stabilized by effects related to the nonlocal inter-
action range (σ ) in the quadratic term. Since our system
is dynamical, as opposed to ultracold atomic gases which
are cooled to their ground states, the relevant quantity is
the EOP (19) and not an equation of state. In other words,
our system may be prepared near its pseudo-ground-state
configuration with a bulk density ρ0 �= ρ∗. The form of the
EOP in Eq. (19) at low peak intensity is identical to the
form of the equation of state found for liquid helium [1,17]
and corresponds to the mean-field approximation with zero-
range two-body and three-body forces. It differs only slightly
from dipolar Bose-Einstein condensates (BECs) where
ρ2

0 → ρ
3/2
0 .3

Furthermore, from the EOP, we can define a (pseudo)bulk
pressure P = ρ2

0∂ρ0 [H∗/P ] and compressibility K =
(∂ρ0P )−1. Zero bulk pressure gives the condition for the

2The explicit binding energy B0 = −3γ 2k4
0P

4C2
φ log(

4γ k2
0P

πn0
)/

2π 2 + γ 2k4
0P

4(28δ4 + 36δ2 + 28) + γ k0P/16πn0σ
2.

3In a dipolar BEC, the stabilization mechanism is due to the
Lee-Huang-Yang quantum correction term, which scales as ρ

3/2
0 as

opposed to ρ2
0 [3,11,12,14].

bound-state energy (minimum). From the compressibility,
the inverse of which is plotted in Fig. 2(c), we can obtain a
spinodal decomposition point [59], after which sound waves
can propagate in the system. Prior to this point, the system is
unstable and droplet nucleation is expected.

We have shown that this p-wave bound state not only
forms due to a competition of forces, but also attains liquidlike
properties. It is thus apparent that it is a droplet, and we will
from here on refer to the state as a p-wave droplet in analogy
with quantum many-body systems.

VI. DYNAMICS

In order to compare our theoretical variational calculation
within the LWA to exact numerical simulations we need to
study the dynamical (z-dependent) problem. To do so, we first
modify the Ansatz to account for its nontrivial z dependence.
For our dynamical variational parameter ξ (z) (note that by
conservation of angular momentum |δ| is fixed and the vari-
ational analysis is degenerate with respect to the phase of δ),
we see that in order to obtain kinetic terms in the Lagrangian
L = ∫

d2rL of the form ∼∂2
z ξ , we need to include a phase

term such that the variational Ansatz becomes

Ep(r, z) → Ep(r, z) exp

(
− ik0Zξ

2

∫ z

0
dz′

[
dξ

dz′

]2
)

. (20)

Here we have introduced z-independent renormalization con-
stants Zξ and Zγ , the latter such that γ → γZγ . These are
necessary since the rate of acquired phase is unknown at
this stage, similar to the situation in interacting field theories
[60,61]. Given a number of renormalization conditions that
fix the values of the renormalization constants, the theory
achieves predictive power. Here the constant Zξ (Zγ ) can be
determined by fixing known linear (nonlinear) effects to either
numerical simulations or experimental data. The renormal-
ization constants manifest themselves as counterterms in the
renormalized Lagrangian, which reads

L = Pk0

2

(
dξ

dz

)2

− H∗

+ (Zξ − 1)
Pk0

2

(
dξ

dz

)2

− (Zγ − 1)H (2)
∗ , (21)

where H
(2)
∗ is the part of the Hamiltonian containing only the

nonlinearity introduced by �n in Eq. (2). By minimizing the
Lagrangian, we find the equation of motion

d2ξ

dz2
= − 1

Pk0Zξ

∂H∗
∂ξ

. (22)

Upon renormalization, we find the constants to have values
Zξ = 4 and Zγ = 0.76. These are fixed by the initial prop-
agation of a single low-P simulation and a single high-P
simulation, respectively for Zξ and Zγ . Importantly, we can
now use these values for any P , ξ , or δ.

From Fig. 2 we can expect dynamics in the form of
oscillations if the input electric-field envelope has ξ or δ

slightly away from the minimum. The frequency of these
oscillations can be related to the surface tension of the droplet
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FIG. 3. (a) Evolution of the radius 〈r〉 as predicted by analytical
theory (red dashed line) and direct numerical simulation (blue solid
line) with initial conditions ξ0 = 70 μm, |δ| = 0.9, and P = 2 W.
(b) Similarly, numerical evolution of 〈cos2 φ〉 [blue solid (lower)
line] and 〈sin2 φ〉 [red shaded (upper) line]. In the inset, droplet
rotation can be seen more clearly at longer propagation distance.

[25].4 We choose as initial conditions ξ0 = 70 μm and δ =
0.9 with input power P = 2 W and evolve using a split-step
propagation algorithm [56]. In Fig. 3 we show the evolution of
the radius 〈r〉, 〈sin2 φ〉, and 〈cos2 φ〉 at different z. We observe
oscillations in the radius as well as an overall rotation. The
variational model is in excellent qualitative and good quan-
titative agreement with the exact dynamics of the system. In
particular, the main feature of the evolution, i.e., oscillations
in size, are properly reproduced by our model, including the
correct period of the oscillations. If we further consider the
angular dynamics, we see that the overall trend in Fig. 3(b)
implies that the droplet is rotating and the small oscillations
indicate that the angular distribution oscillates (for more de-
tails of this rotation, see the Supplemental Material, Video 1
[62]). The latter can be attributed to the system attempting to
reach the |δ| = 1 minimum, but due to conservation of angular
momentum is only able to temporarily scatter momenta away
from the bound state.

We now consider the far-from-equilibrium situation (see
Fig. 4) (see also the Supplemental Material, Video 2 [62]).
Here the initial condition, shown in Fig. 4(a), is a slightly
perturbed vortex (|δ| = 0.05) with input power P = 15 W.
This is in the unstable regime (left of the spinodal decom-
position point, i.e., where K−1 � 0) and droplet nucleation
is expected. Indeed, the p-wave droplet emerges after a few
violent collapse-rebound cycles. While most of the pseudoen-
ergy is either shed or redistributed into binding energy, some
excess pseudoenergy manifests itself as surface vibrations.

VII. CONCLUSION

We have found and described bound states carrying
nonzero orbital angular momentum in a photon fluid with
nonlocal attractive (focusing) interactions (nonlinearity). In
particular, using matter-wave analogies and developing the-
oretical tools not typically used in optics, we found that these
states are stabilized by a competition of long-range s-wave
and d-wave forces, exhibit liquid behavior, and are thus a
type of droplet. In fact, these bound states are similar to

4This can also be seen by calculating the surface tension as � =∫
dl[H∗ − μ∗ρp], with l being the coordinate orthogonal to the sur-

face, and compare this with the frequency of small-size excitations.

FIG. 4. Evolution snapshots for an initial power P = 15 W,
radial size ξ0 = 70 μm, |δ| = 0.05, and (a) z = 0 m, (b) z = 0.05 m,
(c) z = 0.075 m, (d) z = 0.11 m, (e) z = 0.13 m, and (f) z = 3 m.
Observe the initial collapse in (b), followed by a violent rebound
in (c). This collapse-rebound cycle continues (less violently) until
the system has redistributed most of its pseudoenergy into p-wave
droplet binding energy, such as in (f). Excess pseudoenergy emerges
as surface vibrations (see Supplemental Material, Video 2 [62]).

the droplets recently found experimentally in dipolar atomic
gases, albeit with a different stabilization mechanism. The
observed rotation may be linked to self-induced synthetic
magnetic fields recently introduced in photon fluids [63].
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APPENDIX A: VALIDITY OF THE LWA

A commonly used expansion for a nonlocal refractive
index is the so-called Snyder-Mitchell approximation, where
the refractive index is simply proposed to take the form of a
parabola [27]. This would correspond to only keeping the s-
wave term of the above expansion and further approximating
the medium’s response function R(r) ∝ r2. Let us now ex-
amine the regions of validity of the long-wavelength approx-
imation and compare this to the Snyder-Mitchell approach.
Note that we will show that the Snyder-Mitchell approach is
incorrect for nonzero OAM in Appendix B. We start from
Eq. (2), which gives the thermally induced refractive-index
change from the distributed loss model as

�n(r, z) = γ

∫
d2r ′R(r − r′)|E(r′, z)|2, (A1)

with |E(r, z)|2 scaled such that it yields the transverse inten-
sity profile. As an illustrative example we use the case of a
spherically symmetric (s-wave) Gaussian of power P and spot
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FIG. 5. (a) Scaled index change �n/γP versus r/σ according
to the long-wavelength approximation (A4) (dashed line), according
to the Snyder-Mitchell approximation (A5) (solid line with crosses),
and the exact index change (solid line). (b) Exact solution for �n(r )
(solid line), the long-wavelength approximation (dashed line), and
the Snyder-Mitchell approximation (solid line with crosses). Notice
that the different approximate refractive-index profiles both give
similar integrands. One should note that a p-wave droplet is expected
to be localized at radii r � 0.0035σ , where the long-wavelength
approximation better approximates the distributed loss model. The
inset shows the crossover region.

size ξ ,

|E(r, z)|2 = 2P

πξ 2
e−2r2/ξ 2

. (A2)

For such a symmetric intensity profile the refractive-index
profile may be recast in cylindrical coordinates as

�n(r, z) = γ

∫ ∞

0
|E(ζ, z)|2G0(r, ζ ; a)ζ dζ, (A3)

where the Green’s function is given by Eq. (7) of Ref. [64],
but where in their notation ζ → ξ and W denotes the spot
size instead of ξ . In our case, the parameter a is equal to the
nonlocal length σ .

We are interested in the case when the Gaussian spot size
is much smaller than the nonlocal length ξ � σ and we
set ξ = 0.005σ as an example. The solid line in Fig. 5(a)
shows the scaled index change �n/γP versus r/σ calculated
numerically according to Eq. (A3) above and we will use this
example as a test bed for the approximations employed in the
paper.

The long-wavelength approximation is given by Eq. (17)
and this yields

�n

γP
= K0(r/σ )

2πσ 2

[
1 + 1

2

(
ξ

σ

)2
]
, (A4)

We note that this approximation for the scaled index change
�n/γP does not involve the Gaussian spot size. This arises
since the narrow Gaussian with ξ � σ acts like a δ function
multiplied by the power P . The dashed line in Fig. 5(a)
shows the scaled index change �n/γP versus r/σ according
to the long-wavelength approximation Eq. (A4). We see, as
expected, that the long-wavelength approximation does not
work well near the origin but it improves at larger distances.
For the p-wave case discussed in the text, the centrifugal
barrier makes the droplets avoid short distances, as we have
seen, and short distances become irrelevant.

We will discuss the Snyder-Mitchell model in more detail
in Appendix B, but in short the thermally induced refractive-
index change is given by

�n(r ) − �n(0) = − γP

4σ 2Aeff
r2, (A5)

where Aeff = πξ 2/2 for the Gaussian example and �n(0)
is the on-axis index change. The solid line with crosses
in Fig. 5(a) shows the scaled index change �n/γP versus
r/σ according to the Snyder-Mitchell approximation (A5). In
contrast to the long-wavelength approximation, the Snyder-
Mitchell approximation works very well close to the origin but
deviates at larger distances. In particular, the Snyder-Mitchell
approximation provides a better approximation to the index
profile for distances r � ξ/

√
2 = 0.0035σ , which is over the

spatial extent of the Gaussian example of width ξ . While the
on-axis Gaussian provides an illustrative example, we should
note that p-wave droplet is localized off-axis. In fact, we
expect the peaks and thus the bulk of the field intensity to be at
radii r � ξ/

√
2 and thus the long-wavelength approximation

is preferred.
An apparent issue arises in that we are using noticeably

different forms of the scaled index change �n/γP from
the long-wavelength approximation and the Snyder-Mitchell
approximation but hoping to address the same physics. The
question is how useful information may be obtained based on
the long-wavelength approximation which actually diverges
near the origin. The answer lies in the fact that we use the
LWA in a variational (Lagrangian or Hamiltonian) calculation
that involves the integral of the refractive index profile and the
intensity of the form∫ ∞

0
|E(r )|2�n(r )r︸ ︷︷ ︸

integrand

dr. (A6)

In Fig. 5(b) we plot the underbraced integrand versus r/σ

from this integral for the exact solution for �n(r ) (solid
line), the long wavelength approximation (dashed line), and
the Snyder-Mitchell approximation (solid line with crosses).
Here we see that, despite the differences in the approximate
refractive-index profiles, they give very similar results for the
integrand. Thus, from the perspective of the variational meth-
ods, the different approaches should yield similar results in
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the spherically symmetric case since they depend on integrals
as above.

APPENDIX B: COMPARISON TO THE
SNYDER-MITCHELL APPROXIMATION

We will here explore the p-wave droplet characteristics
under the assumption that the Snyder-Mitchell model of the
nonlocal response function is correct. There is a plethora
of Snyder-Mitchell models, many of which assume a con-
stant harmonic frequency [27–29,36,42,65]. These models are
azimuthally symmetric and droplet-shape independent, so it
comes as no surprise that the pseudoenergy is δ independent.
However, we can improve upon this by taking the shape into
account. As before, let us start at the paraxial wave equation

i
∂E(r, z)

∂z
= − 1

2k0
∇2E(r, z) − k0

n0
�n(r, z)E(r, z). (B1)

In the Snyder-Mitchell regime, the nonlocal response of the
medium is approximated as �n(r) 
 −�2r2, where � is the
harmonic-oscillator frequency given by the relation

�2 = αβP

4κAeff
= γP

4σ 2Aeff
(B2)

and where

Aeff =

(∫
d2r|E(r)|2

)2

∫
d2r|E(r)|4

(B3)

is the effective area of the beam. We are looking for droplets
with orbital angular momentum � �= 0 and thus we make the
Ansatz

E(r, z) = Ed (r)ei�φe−iμ∗z. (B4)

This has solutions of the form

Ep(r, φ) = r |ζ |
1F1(−n, |ζ | + 1, 2r2/ξ 2)e−r2/ξ 2

eimφ, (B5)

where m is an integer, n is a positive integer, |ζ | = |m + �|,
and 1F1 is the confluent hypergeometric function of the first
kind. The pseudochemical potential of this family of solutions
is given by

μ∗ = k0γP

4n0Careaσ 2
(2n + |ζ | + 1). (B6)

Here we have defined Carea ≡ Aeff/ξ
2. Focusing on the case

of n = 0, the normalized droplet takes the form

Ed (r, φ) = 2(|ζ |+1)/2
√

Pξ (−2|ζ |−2)/2

√
π

√
�(|ζ | + 1)

× r |ζ |
1F1(0, |ζ | + 1, 2r2/ξ 2)e−r2/ξ 2

e±imφ.

For this to be a self-consistent solution, we require that

4

ξ 4
= 2k2

0�
2(ξ )

n0
(B7)

and thus

4

ξ 4
= 2k2

0γP

4σ 2Aeff(ξ )
= 2k2

0γP

4n0σ 2Careaξ 2
, (B8)

FIG. 6. Pseudochemical potential surface of the droplet as a
function of the variational parameter δ as given by Eq. (B6) from the
Snyder-Mitchell model with P = 1W. As can be seen, this energy
landscape is qualitatively different from the one seen in Fig. 2(a).
This is also qualitatively different from numerical evidence.

where in the latter step we used Eq. (B3) to calculate the
effective area. In the above,

Carea = 4|ζ |�(|ζ | + 1)2π

�(2|ζ | + 1)
. (B9)

Solving the self-consistency relation for the characteristic size
ξ yields

ξ =
√

8Carean0

k2
0γP

σ. (B10)

So far, this looks quite far from the observed p-wave droplet.
However, let us look closer at the pseudochemical potential
μ∗. If we let � = 1, then we notice that m = 0 and m = −2
both have |ζ | = 1. Therefore, the m = 0 and m = −2 state
has the same pseudoenergy. In other words, the ground state
is degenerate. We can now form a superposition of s- and d-
wave states (for OAM � = 1) as a superpositon of the two
degenerate ground states, i.e., the electric field takes the form

E
p wave
d (r, φ) = 2

√
P√

π
√

1 + δ2ξ 2
re−r2/ξ 2

[1 + δe−2iφ]. (B11)

Here we should point out that in general a superposition has
a different effective area than either of its constituents, that
is, the area is not given by Eq. (B9) in general and thus the
pseudochemical potential will vary with δ. The pseudochem-
ical potential and the pseudoenergy are connected through
Eq. (10), therefore the landscape of the pseudochemical po-
tential maps directly to the pseudoenergy surface. In Fig. 6
we see that the Snyder-Mitchell model predicts qualitatively
different behavior than the low-wavelength approximation (cf.
Fig. 2). The long-wavelength approximation is in agreement
with numerical results; we must conclude that the Snyder-
Mitchell model is not sufficient to capture the physics ad-
dressed in this work.
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