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The interaction of light with rotating media has attracted recent interest for both fundamental and applied

studies including rotational Doppler shift measurements. It is also possible to obtain amplification through

the scattering of light with orbital angular momentum from a rotating and absorbing cylinder, as proposed

by Zel’dovich more than forty years ago. This amplification mechanism has never been observed

experimentally yet has connections to other fields such as Penrose superradiance in rotating black holes.

Here we propose a nonlinear optics system whereby incident light carrying orbital angular momentum

drives parametric interaction in a rotating medium. The crystal rotation is shown to take the phase-

mismatched parametric interaction with negligible energy exchange at zero rotation to amplification for

sufficiently large rotation rates. The amplification is shown to result from breaking of anti-PT symmetry

induced by the medium rotation.
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Introduction.—The interaction of vortex light beams

carrying orbital angular momentum (OAM) with rotating

media has been shown to lead to a series of novel

fundamental phenomena and applications. Some such as

the rotational Doppler shift have an analogue for non-

rotating light or media [1–3] while others allow new effects

such as the creation of effective magnetic fields for light

[4]. A recent study of second-harmonic generation in a

rotating crystal showed the existence of an unexpected

nonlinear analogue of the rotational Doppler effect, i.e., a

frequency shift imparted upon a beam with OAM from a

rotating crystal [5].

Zel’dovich first described the situation in which a

material cylinder that is an absorber of incident radiation

while at rest, could nonetheless amplify incident light

waves carrying optical angular momentum if the cylinder

was rotating at a high enough frequency Ω around its

axis [6,7]. In this way, energy of rotation of the medium can

be transferred to the light field, a result whose generali-

zation encompasses the extraction of energy from rotating

black holes or stars [8–11]. An elementary picture of

how the Zel’dovich effect arises may be garnered from

considering a cylinder made up of two level atoms, and

a probe field of frequency ω1 carrying OAM with

winding number m̄. In this case, the linear susceptibility

of the medium as calculated in the reference frame

rotating at frequency Ω may be written as the sum of

two Lorentzians [12]

χð1Þðω0Þ ¼

�
Njμj2=ϵ0ℏ

ω0 − ω0 − iΓ=2
þ

Njμj2=ϵ0ℏ

ω0 þ ω0 þ iΓ=2

�

; ð1Þ

whereN is the number density of atoms, μ the dipole matrix

element between the two levels, ω0 being the transition

frequency, Γ is the population decay rate of the upper level,

and ω0 ¼ ðω1 − m̄ΩÞ accounts for the rotational Doppler

effect [2]. For the nonrotating case and ω0 ¼ ω1 ≃ ω0 for

near-resonant conditions, the second Lorentzian in the

square brackets may be neglected on the basis that it is

nonresonant, and this yields a net absorption. In contrast,

for a large enough rotation rate ω0 can become negative and

the second Lorentzian can become resonant and dominant.

In this case, a net gain arises since the second Lorentzian

has the opposite sign of the upper level decay rate. Gain

then becomes a possibility for ω0 < 0, i.e.,

m̄Ω > ω1; ð2Þ

which is the condition commonly quoted for observing the

Zel’dovich effect [6,7,13,14].

Here we consider a nonlinear optics realization of the

Zel’dovich effect that emerges from three-wave mixing of

ring-shaped vortex beams in a rotating second-order non-

linear crystal. We find that a light beam carrying OAM can

experience parametric amplification under a condition on

the crystal rotation rate akin to Eq. (2). The key physics is

that the rotation modifies the phase matching of the

nonlinear interaction, which is phase mismatched at zero

rotation, and triggers parametric amplification for sufficient

rotation. This amplification is shown to result from break-

ing of anti-PT symmetry induced by the rotation.

Basic geometry and equations.—Our basic model

involves propagation along the optic axis in a nonlinear
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uniaxial optical crystal: As a concrete example we choose

a crystal of point symmetry 32 as described in Ref. [15],

but the approach applies to other point symmetries such

as 3m. In our model of parametric amplification a signal

field at the fundamental frequency ω1 is incident on the

second-order nonlinear crystal along with a pump field at

the second-harmonic (SH) frequency ω2 ¼ 2ω1. In this

case, the nonlinear parametric interaction can generate an

idler field that is also at the fundamental frequency

ω3 ¼ ðω2 − ω1Þ ¼ ω1. For this geometry, it is known that

if the fundamental field is circularly polarized (same

handedness for both signal and idler) the SH field has

the opposite handedness [15]. Denoting the complex

amplitude of the circularly polarized fundamental field

and of the oppositely handed circularly polarized SH

field as A1ðx; y; zÞ and A2ðx; y; zÞ, respectively, the slowly
varying envelope equations used in Ref. [15] for the

fields take the form (for more detail see Sec. I of the

Supplemental Material [16])

∂A1

∂z
¼

i

2k1
∇2

⊥
A1 þ iηA2A

�
1
e−iΔkz;

∂A2

∂z
¼

i

4k1
∇2

⊥
A2 þ iηA2

1
eiΔkz; ð3Þ

where kj ¼ njωj=c, nj ¼ noðωjÞ is the ordinary refractive

index at the selected frequency, ∇2

⊥
is the transverse

Laplacian describing diffraction, η ¼ 2deffω1=n1c with

d11 the second-order nonlinear coefficient, Δk¼2k1−k2,
and we used k2 ≈ 2k1 in the SH diffraction term.

Equations (3) are the basis for our subsequent development

and coincide in form with those given by Boyd [17] and

also used in Ref. [18].

Rotating frame equations.—Our goal is to investigate the

parametric interaction between the fields in a frame rotating

at frequency Ω around the optic axis, Eqs. (3) being in the

lab frame. We note that the nonlinear terms in these

equations are invariant with respect to rotation due to

the choice of propagation along the optic axis and the use of

circular polarization states. To proceed, we state the field

equations in the rotating frame:

∂A1

∂z
¼

i

2k1
∇2

⊥
A1−k1

�
Ω

ω1

�
∂A1

∂ϕ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

þ iηA2A
�
1
e−iΔkz;

∂A2

∂z
¼

i

4k1
∇2

⊥
A2−k2

�
Ω

ω2

�
∂A2

∂ϕ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

þ iηA2

1
eiΔkz; ð4Þ

with ϕ the azimuthal angle in cylindrical coordinates (ρ, ϕ,

z). The underbraced terms represent the effect of trans-

forming to the rotating frame and may be understood as

follows: If we consider either field with winding number l,

and associated azimuthal variation eilϕ, the underbraced

terms may be written generically as

−k

�
Ω

ω

�
∂A

∂ϕ
≡ −ik

�
lΩ

ω

�

A ¼ iδkA;

where we have dropped the subscript j ¼ 1, 2 for sim-

plicity. Using this result in combination with Eqs. (4), we

identify the fractional change in the longitudinal wave

number as δk ¼ −ðlΩ=ωÞk for beams carrying OAM, in

agreement with Ref. [3]. Then the longitudinal wave

number in the rotating frame is k0 ¼ k½1 − ðlΩ=ωÞ�, and
there is a concomitant rotational Doppler shifted frequency

ω0 ¼ ω½1 − ðlΩ=ωÞ�. The underbraced terms in Eqs. (4)

therefore account for the rotational Doppler effect in the

rotating frame.

Perfect optical vortices.—Our proposal for the nonlinear

Zel’dovich effect (NLZE) involves the parametric inter-

action between weak signal and idler fields in the presence

of a strong SH pump field. Since the signal and idler

fields are both at the fundamental frequency, they must be

distinguished in some other way. To develop the ideas

and have an analytic theory we consider the case that all

interacting fields are perfect optical vortices (POVs)

[19,20] with a different helical phase-front winding

number m. POVs are ring-shaped beams whose radius R
is independent of winding number and the same for all

interacting fields. As shown in Sec. II of the Supplemental

Material [16], for POVs of width W, R ≫ W ≫ λ, the

slowly varying electric field envelope for a POVaround the

peak of the ring may be written as

Aðρ ¼ R;ϕ; zÞ ¼ aðzÞeimϕe−ðiz=2kÞðm
2=R2Þ−ikzðmΩ=ωÞ: ð5Þ

In the second exponential on the right-hand side, the first

term describes the reduction in the z component of the wave

vector due to the ray skewing associated with the beam

OAM [21,22], and the second term accounts for the

rotational Doppler effect.

Parametric interaction of POVs.—To proceed we

assume that the pump (j ¼ 2) field is much stronger than

the signal (j ¼ 1) field. Then the parametric amplification

process, which produces one signal and one idler photon

from one pump photon, generates an idler field (j ¼ 3) that

has winding number m3 ¼ m2 −m1. Assuming all fields

are described by POVs, we then write the slowly varying

electric fields for the fundamental and second harmonic

fields, with ρ ¼ R, as

A1ðϕ; zÞ ¼ a1ðzÞe
im1ϕe−ðiz=2k1Þðm

2

1
=R2Þ−ik1zðm1Ω=ω1Þ

þ a3ðzÞe
im3ϕe−ðiz=2k1Þðm

2

3
=R2Þ−ik1zðm3Ω=ω1Þ;

A2ðϕ; zÞ ¼ a2e
im2ϕe−ðiz=4k1Þðm

2

2
=R2Þ−ik2zðm2Ω=ω2Þ; ð6Þ

with a2 independent of z in the undepleted pump beam

approximation, and a3ð0Þ ¼ 0 with no idler present at the

input. Here we have set k3 ¼ k1 since the signal and idler

have the same frequency and experience the same refractive
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index. In Sec. III of the Supplemental Material [16] we

show that using the fields in Eqs. (6) along with the

propagation Eqs. (4) yield the linearized signal-idler

equations in the rotating frame

da1

dz
¼ iðηa2Þa

�
3
eiκz;

da3

dz
¼ iðηa2Þa

�
1
eiκz; ð7Þ

where the OAM dependent wave vector mismatch is

κ ¼ −Δkþ
Ωm2

c
ðn1 − n2Þ þ

ðm1 −m2=2Þ
2

k1R
2

≈
2

c
ðω1 − m̄ΩÞðn2 − n1Þ þ

ðm1 −m2=2Þ
2

k1R
2

: ð8Þ

Here m̄ ¼ m2=2 ¼ ðm1 þm3Þ=2 may be viewed as the

mean winding number of the combined signal and idler

fields. These equations may be solved for the fields at the

output of the crystal of length L [17,18]. The detailed

expressions are given in Sec. IV of the Supplemental

Material [16], with the final result that the net gain for

the fundamental field (combined signal and idler output

power over input signal power) may be expressed as

G ¼

�
�
�
�
coshðgLÞ −

iκ

2g
sinhðgLÞ

�
�
�
�

2

þ

�
�
�
�

ηa2

g
sinhðgLÞ

�
�
�
�

2

ð9Þ

and the signal gain (output over input signal power) is

Gs ¼
PsðLÞ

Psig

¼

�
�
�
� coshðgLÞ −

iκ

2g
sinhðgLÞ

�
�
�
�

2

: ð10Þ

Here g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βIp − κ2=4
q

is the growth rate if the argument

of the square root is positive.

Nonlinear Zel’dovich effect.—From the growth rate g
above it follows that parametric amplification arises for

βIp > κ2=4, the growth rate being zero for βIp ≤ κ2=4.
Consider a situation in which for zero rotation, Ω ¼ 0, the

growth rate is zero, βIp < κ2=4. If we consider normal

dispersion so that n2 > n1 and m̄Ω > 0, then according to

Eq. (8) with a large enough rotation rate a nonzero growth

rate can arise due to rotation, that is due to the effect of

nonzero Ω reducing κ2. For illustration, if we neglect the

second term on the bottom line of Eq. (8), based on taking

the limit k1R ≫ 1, the condition for κ ¼ 0 and the maximal

growth rate becomes

ω1 ¼ m̄Ω: ð11Þ

This expression coincides with the boundary between loss

and gain in Eq. (2) found by Zel’dovich [6,7]. In our case

the probe is composed of both signal and idler fields so the

mean winding number m̄ appears, and Eq. (11) corresponds

to the peak parametric amplification.

Figure 1 shows an example of the predicted parametric

amplification at λ1 ¼ 1 μm arising from rotation for a

crystal of length L ¼ 2 mm, nonlinear coefficient

deff ¼ 0.83 pm=V, n1 ¼ 1.6; ðn2 − n1Þ ¼ 10−3, pump

intensity Ip ¼ 2 GW=cm2, and a ring radius R ¼ 16 μm.

Furthermore, we set m2 ¼ 300 and take m1 ¼ 149 giving

m3 ¼ 151. This choice implies that ðm1 −m2=2Þ ¼ 1 is

minimized in the last term in Eq. (8), while keeping m1;3

distinct and m2 ¼ 2m̄ large. Figure 1(a) shows the

predicted parametric gain factor j expð2gLÞj over the

medium length versus the rotation rate Ω. This plot is

compatible with our discussion above of the NLZE:

Since m̄ > 0, parametric amplification is possible only

for Ω > 0, thus the medium rotation and probe OAM

must be corotating for gain, in agreement with the LZE.

In addition we find the peak gain for Ωp ∼ ω1=m̄ ¼
1.2 × 1013 rad s−1. We note that at these radii, chosen so

that the rotation speed at distance R is subluminal

(0.66c), the last term in Eq. (8) is only slightly shifting

the resonance peak away from Ωp (indicated with a

vertical dashed line). A smaller radius, e.g., R ¼ 4 μm

ensures that one is in a fully nonrelativistic regime,

albeit with a resonance peak that shifts to 1.57 ×Ωp

(data not shown). The bandwidth of the parametric

amplification may be estimated using the condition for

growth −
ffiffiffiffiffiffiffi
βIp

p
< κ=2 <

ffiffiffiffiffiffiffi
βIp

p
. Then using the previous

approximation k1R ≫ 1 we obtain δΩ ≈ 2c
ffiffiffiffiffiffiffi
βIp

p
=

½ðn2 − n1Þm̄�. For the parameters used, δΩ ¼ 0.1×

1013 rad s−1 in agreement with Fig. 1(a). Note that the

factor j expð2gLÞj only shows the material gain. In

experiments aimed at revealing the NLZE, one would

inject a signal field and measure the net and signal gains

given in Eqs. (9) and (10), respectively. Figure 1(b)

shows the signal gain versus Ω (dash line) and the net

gain (solid line), signal plus idler. Thus, whether the

signal alone is detected or both the signal and idler, clear

amplification is observed over a range of positive rotation

(a)

(b)

FIG. 1. (a) Parametric gain factor j expð2gLÞj over the medium

length versus the rotation rate Ω, and (b) the signal gain Gs (dash

line) and net gain G (solid line) both as functions of the rotation

rate Ω. For these calculations m1 ¼ 149 and m2 ¼ 300. The

vertical dashed line indicates Ωp ¼ ω1=m̄ ¼ 1.2 × 1013 rad s−1.
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rates. The full-width ΔΩ for the net and signal gains is

larger than the parametric gain in Fig. 1(a), meaning that

the fields can still exchange energy even outside of the

gain region, and may be estimated by requiring κL ¼ �π

at the edges for the phase mismatch to diminish the gain.

Using, as above, the approximation k1R ≫ 1 yields

ΔΩ ≈ πc=½ðn2 − n1Þm̄L�. For the parameters used here

this yields ΔΩ ¼ 0.3 × 1013 rad s−1 in reasonable agree-

ment with Fig. 1(b).

Numerical simulations.—We performed beam propaga-

tion method (BPM) simulations in order to verify our

results, independently of the approximations employed

above. We first note that the frequency width ΔΩ given

above, when normalized to the peak rotation rate

Ωp ¼ ω1=m̄, becomes independent of the probe winding

number m̄. From the perspective of comparing with

BPM simulations it is therefore useful to look at the

probe gain versus scaled rotation rate ðΩ=ΩpÞ. This is

particularly the case since including large field winding

numbers in the BPM is computationally challenging.

Figure 2 shows the results for the gain as a function of

scaled rotation rate ðΩ=ΩpÞ using (a) the analytic theory

and (b) the BPM based on the propagation Eqs. (4) (solid

lines are the net gain G for the fundamental and dashed

lines are the gain Gs for the signal alone). For these

calculations m1 ¼ 8 and m2 ¼ 17, and the BPM simu-

lation is performed with ring beams of radius R ¼ 43 μm

as described in Ref. [18]. The fact that the analytic theory

yields higher gains is not surprising given that it is based

solely on the peak of the ring where the maximum gain

appears, whereas the BPM includes the distribution of

intensities in the fields. However, the overall qualitative

agreement between the BPM and analytic theory verifies

the ideas and theory underlying the latter.

Breaking of anti-PT symmetry.—Using the change of

variables a1;3ðzÞ ¼ b1;3ðzÞe
iκz=2, Eqs. (7) may be written in

the matrix form

i
∂

∂z

�
b1

b�
3

�

¼ U

�
b1

b�
3

�

¼

�
κ=2 − ηa2

ηa�
2
− κ=2

��
b1

b�
3

�

; ð12Þ

with interaction operatorU. We may view this as analogous

to a two-state quantum system (ℏ ¼ 1) with z playing the

role of time (T) andU the Hamiltonian, with the caveat that

the Hamiltonian is not Hermitian in this case. The energy

eigenvalues of U are given by E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2=4 − βIp

q

, where

we used βIp ¼ η2ja2j
2, which are either both real or both

imaginary. This is reminiscent of the class of Hamiltonians

that are non-Hermitian but can display parity-time (PT)
symmetry and yield real eigenvalues [23–25]. More spe-

cifically, following Bender et al. [26], the combined action

of the parity operator P, which interchanges 1 ↔ 3, and the

time-reversal operator T, which takes the complex con-

jugate, on the interaction operator yields ½PTU�μν ¼ U�
νμ,

with μ; ν ¼ �1 and the identifications þ1≡ 1, −1≡ 3.

Then for the case with jκ=2j ≥
ffiffiffiffiffiffiffi
βIp

p
with real eigenvalues

we find PTU ¼ −U, the real eigenvalues giving rise to a

phase-conjugate coupling between the basis states with

concomitant oscillatory dynamics. In this case the inter-

action operator displays anti-PT symmetry as recently

revealed for parametric interactions in nonlinear optics

[27]. In contrast, for the case jκ=2j <
ffiffiffiffiffiffiffi
βIp

p
with imaginary

eigenvalues PTU ¼ U, and the system displays PT sym-

metry, or broken anti-PT symmetry. In this case, the

imaginary eigenvalues E ¼ �ig give rise to parametric

gain and loss. We note that phase-conjugate coupling

can also produce a net gain of an incident signal via

energy exchange, and this underpins why the signal gain in

Fig. 1(b) can occur over a full width ΔΩ that is larger than

δΩ in Fig. 1(a) for strict parametric amplification. In our

case the transition from unbroken to broken anti-PT
symmetry is accomplished by rotating the nonlinear

medium. Physically, for large enough rotation rates the

peak of the POV ring beams acts as an ergoregion from

which energy can be extracted from the rotational energy of

the medium, that must be replenished to maintain the

rotation, in the form of amplification of the probe beam.

In related earlier work, Silveirinha [28] described sponta-

neous PT symmetry breaking as the result of linear motion

of a third-order nonlinear medium, with concomitant

modulation instability and amplification. The role of PT
symmetry in wave instabilities in a cavity with rotating

walls was discussed in Ref. [29], this system having

intimate connections with the linear Zel’dovich effect.

Conclusions.—Parametric interaction in a rotating

crystal arises due to a “nonlinear" Zel’dovich effect

whereby the rotational energy of the transparent crystal

triggers parametric amplification of light signals. In the

linear Zel’dovich effect, the amplification arises from the

rotational Doppler effect changing the resonance properties

of the medium, whereas here the amplification arises from

rotation-induced changes in phase matching. As for the

(a)

(b)

FIG. 2. Signal gain Gs (dashed line) and net gain G (solid line)

both as functions of the scaled rotation rate Ω=Ωp using (a) the

analytic theory and (b) the BPM. For these calculations m1 ¼ 8

and m2 ¼ 17, all other parameters being the same as for Fig. 1.

PRL 118, 093901 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

3 MARCH 2017

093901-4



linear Zel’dovich effect, the m̄Ω ¼ ω1 condition leads to

rotation rates of the order of THz even for m̄ ¼ 1000.

The example considered here allowed us to explain the

physics of NLZE amplification with a relatively simple and

transparent model. Lower rotations are expected by exam-

ining other forms of medium nonlinearity, for example

stimulated scattering. In this case, the rotational Doppler

shift could be used to change an incident field tuned to the

anti-Stokes resonance at zero rotation, which experiences

loss, into a Stokes wave with accompanying gain for

sufficient rotation. For Brillouin scattering, the required

rotation frequency is related to the Brillouin frequency shift

(i.e., the frequency of the medium phonons, of the order of

1–0.1 GHz [30]) as opposed to the optical frequency. This

could bring the overall rotation frequencies towards the

experimentally accessible MHz regime [31], although more

detailed modeling will be required in order to quantitatively

verify this prediction.

Our results extend ongoing studies of the interaction of

matter with light possessing OAM. For example, OAM

may modify the microscopic interaction symmetry and the

selection rules with a single atom [32–34]. Our work shows

that beyond this, rotation of the medium may lead to a

breaking of the macroscopic parity-time symmetry of the

interaction that results in amplification of the optical beam

at the expense of the medium rotation. Observing this

amplification would not only be of importance for our

understanding of fundamental phenomena but could lead to

applications in quantum processing (through amplification

of quantum vacuum states) with potential extensions also to

plasmonics [35] or slow light systems that may further

enhance the interaction [36,37].
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