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Fluorescence lifetime imaging 
with a megapixel SPAD camera 
and neural network lifetime 
estimation
Vytautas Zickus1,6, Ming‑Lo Wu2,6, Kazuhiro Morimoto2, Valentin Kapitany1, Areeba Fatima1, 
Alex Turpin3, Robert Insall4,5, Jamie Whitelaw4,5, Laura Machesky4,5, Claudio Bruschini2, 
Daniele Faccio1* & Edoardo Charbon2*

Fluorescence lifetime imaging microscopy (FLIM) is a key technology that provides direct insight 
into cell metabolism, cell dynamics and protein activity. However, determining the lifetimes of 
diơerent ƪuorescent proteins requires the detection of a relatively large number of photons, hence 
slowing down total acquisition times. Moreover, there are many cases, for example in studies of cell 
collectives, where wide-field imaging is desired. We report scan-less wide-field FLIM based on a 0.5 
MP resolution, time-gated Single Photon Avalanche Diode (SPAD) camera, with acquisition rates up 
to 1 Hz. Fluorescence lifetime estimation is performed via a pre-trained artificial neural network with 
1000-fold improvement in processing times compared to standard least squares fitting techniques. We 
utilised our system to image HT1080—human fibrosarcoma cell line as well as Convallaria. The results 
show promise for real-time FLIM and a viable route towards multi-megapixel ƪuorescence lifetime 
images, with a proof-of-principle mosaic image shown with 3.6 MP.

Fluorescence lifetime imaging, unlike conventional �uorescence imaging techniques, measures the temporal 
properties of a �uorophore—its �uorescence lifetime1–3. Fluorescence decay can be a�ected by the environment 
of the �uorophore such as concentration of oxygen, pH, or protein-protein interactions, among many others3–5. 
Hence, extracted lifetimes can reveal contrast across the sample, which would be otherwise unseen from �uores-
cence intensity measurements only. Fluorescence lifetime imaging microscopy (FLIM) is widely utilised in bio-
logical sciences6,7. For instance, in cancer research FLIM has been used for cancer cell detection8–11, anti-cancer 
or chemotherapy drug delivery12,13, and anti-cancer drug e�cacy studies14,15. In addition to this, in recent years 
FLIM has started to play a role in clinical diagnostics15–17. However, wide adoption of FLIM in clinical settings is 
still lacking, partially due to limited imaging speed and/or �eld of view (FOV) of available FLIM systems17. �e 
challenges arise from the fact that nominal lifetimes of endogenous �uorophores and �uorescent proteins lie in 
the range of 0.1–7 ns6. Since there are a number of possible quenching interactions3,18,19 that decrease lifetimes 
even further, detectors with sub-nanosecond temporal resolution are required for FLIM. Typical commercial 
systems make use of confocal microscopes with detectors suitable for point-scanning (such as photomultiplier 
tubes) and time-correlated single-photon counting (TCSPC) electronics that can satisfy the temporal resolution 
requirements20.

However, point-scanning systems can su�er from photo-bleaching due to the high optical energy in the light 
pulses used in the system, and cannot provide instantaneous full FOV information, which becomes important 
when imaging dynamic scenes or in vivo applications. We note that having higher laser power in each spot with 
2-photon excitation can be useful, however, in our case for 1-photon excitation the samples are already close 
to bleaching with an average power of a few mW. �erefore, an analytical comparison of raster scanning and 
wide-�eld data acquisition for FLIM experiments indicates that for the case of dim/sparse samples, wide-�eld 
acquisition can be up to N2 times faster compared to raster scanning, where N is the number of pixel rows in a 
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square array detector21. �erefore, large detectors, such as the SPAD array used in this work, can be important 
for imaging dim samples which are o�en encountered in biologically relevant experiments.

Wide-�eld FLIM is typically realised using TCSPC in a system with microchannel plate-based gated optical 
intensi�ers combined with a sensor capable of resolving signal position, such as a Charge-Coupled Device (CCD) 
camera22,23. An emerging alternative to aforementioned intensi�er based systems are Single Photon Avalanche 
Diode (SPAD) arrays manufactured with complementary-metal-oxide semiconductor (CMOS) technology24, 
which can operate with TCSPC25–31 or time-gated32–37 acquisition mode. �e main advantages of SPAD arrays 
over conventional CCD/CMOS cameras are the picosecond temporal resolution, and single-photon sensitivity38, 
which make them ideal for a broad range of applications in the area of ultrafast time-resolved imaging39. Until 
recently, SPAD arrays had a relatively limited number of ‘active areas’ (or ‘pixels’) due to the physical constraints 
imposed by the need to �t complex timing electronics for each individual pixel on the same chip. Nonetheless, 
recent technological advances have led to SPAD sensors with formats comparable to intensi�ed CCDs. Prior to 
the development of the SPAD array used in this work34, a 512 × 512 SPAD array (SwissSPAD233) was the largest 
SPAD array available (recent developments in SPAD detectors are reviewed in40). We note that generally speaking, 
gated SPAD cameras o�er higher pixel �ll-factor and therefore better photon detection probability compared 
to TCSPC SPAD cameras that require more complex on-pixel electronics. On the other hand, gated cameras 
require digital scanning of the gate to achieve temporal resolution, therefore lengthening the total acquisition 
times. �ere is therefore always a trade-o� between the requirement to scan the gate (for a gated camera) and 
low pixel �ll-factor (for a TCSPC camera). When building a megapixel SPAD camera, one must also consider 
the advantage of higher quality readout obtained by simplifying the electronics.

In this work, we demonstrate 0.5 megapixel (500 × 1024 pixels) wide-�eld FLIM microscopy with a SPAD 
array, while protein �uorescent lifetimes are extracted directly from the data via a bespoke arti�cial neural net-
work (ANN). We illustrate the applicability of the 0.5 MP SPAD array for FLIM imaging of Convallaria samples 
at 1Hz acquisition rate, and also in experiments with samples relevant in cancer research, such as the human 
�brosarcoma (HT1080) cell line. Finally, we show the potential to extend this approach to ultra-wide �elds-of-
view by acquiring 8 tiles with the SPAD array, thus providing a 3.6 MP lifetime image of Convallaria.

0.5 megapixel wide‑field SPAD array
�e SPAD array is described in detail in Ref.34 and in the “Methods”. �e camera operates in gated mode, i.e. the 
sensor is sensitive to incoming photons for a �xed duration gate of ∼ 3.8 ns that has, to good approximation, 
a super-Gaussian pro�le (see “Methods”). Figure 1a schematically explains how the 3.8 ns gate is scanned in 
steps that can be as small as 36 ps. At each step, a binary image (frame) of the spatially resolved photon counts 
is recorded. Stacking together all of these frames therefore provides a temporally-resolved spatial image of the 
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Figure 1.   Principle of time-gated acquisition and the machine learning model. (a) Fluorescence decay is 
sampled with a number of gates, each shi�ed by a minimum of 36 ps. Each exposure corresponds to a ‘time 
bin’, which samples a di�erent part of the �uorescence decay signal. (b) �e ANN architecture (see “Methods”) 
consists of one input layer (IL), one output layer (OL), and a series of hidden layers (HLi, with i = 1, 2, 3 ). Each 
of these layers consists of a fully-connected dense layer (dark blue) followed by with recti�ed linear unit (ReLU) 
activation function (light blue). �e input layer is fed with the �uorescence decay signal recorded by a single 
pixel of the SPAD array.
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sample where the data along the temporal axis is the convolution of the lifetime response with the camera tem-
poral gate. �e samples are imaged on to the camera with 0.47 µm/pixel spatial sampling for our all data, with 
the exception of Fig. 2g–i that has 33 µm/pixel spatial sampling with (see “Methods”).

Lifetime retrieval
Irrespective of the imaging modality used for FLIM measurements, extracting lifetime information is not a trivial 
matter42. �e measured signal, f(t), is the convolution of the impulse response function (IRF) and the �uorescence 
decay of the �uorophore, g(t), can be expressed as:

where ti is the time of the i-th sampling of the signal. A plethora of algorithms have been developed in order 
to tackle the problem of retrieving �uorescence decay (reviewed in42), with perhaps the most common being 
least-squares (LSQ) deconvolution (sometimes referred to as ‘reconvolution’). In this approach a model of the 
�uorescence decay is convolved with the IRF and compared to the measured data using LSQ minimisation. 
�e ‘best �t’ yields a set of parameters, including the lifetime (described in detail in “Methods”). However, LSQ 
minimisation-based lifetime estimation is typically very demanding computationally, even with the reduction 
of computational times provided by Graphical Processing Units (GPUs)43. Recently, a rapid non-�tting method 
called center-of-mass method (CMM) has been improved by accounting the background contribution44. How-
ever, CMM relies on the explicit assumption that the IRF is much shorter than the lifetime measured45, which 
does not apply for example when using gated cameras with gate times that are similar to the expected lifetimes, 
as in this work.

Alternatively, fast visualisation methods such as phasor analysis have been proposed46, and have been suc-
cessfully used for time-gated SPAD array FLIM data analysis47. In addition to the above-mentioned numerical 
approaches, advances in machine learning (ML) methods48 has enabled researchers to utilise deep learning (DL) 
frameworks to extract the exponential decay time and component fraction information from FLIM data rapidly 
and without �tting49,50. Here we employ an ANN to retrieve the lifetime at each pixel of the SPAD array. �e ANN 
layout is shown in Fig. 1b: the input layer (IL) is a one-dimensional array corresponding to the time-resolved 
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Figure 2.   Wide-�eld �uorescence lifetime measurements of Convallaria and HT1080 cells. First column: least-
squares (LSQ) deconvolution; second column: ANN deconvolution; third column: temporal sum of pile-up and 
background corrected intensity data clipped to selected intensity values to reveal dimmer structures. (a)–(c): 
high photon count measurements of Convallaria (100 s acquisition). Mean lifetime measurements for LSQ 
(processing time, 56 min) and ANN deconvolution (processing time, 2.7 s) yield similar values. Spatial sampling 
is 0.47 µm/pixel with a 7% active area �ll-factor. (d)–(f) Low photon counts measurements of Convallaria at 
a total acquisition time of 1 s. LSQ (processing time, 58 min) and ANN (processing time 2.7 s) deconvolution 
results are similar. Spatial sampling is 0.47 µm/pixel. (g)–(i) measurements of HT1080 (�brosarcoma) cells 
expressing Clover41. As with previous data-sets with LSQ (processing time, 23.2 min) and ANN (processing 
time, 3.6 s) retrievals. Spatial sampling is 0.33 µm/pixel. We found the HT1080 cells to be dimmer than the 
Convallaria cells. HT1080 cells yield around 100 photons per second on average in the brightest region, 
compared to around 2500 in the brightest region of Convallaria. Scale bars 50 µm.
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photon-count signal for a given pixel. �is is connected to the output layer (OL), which provides a single value 
for the �uorescence lifetime decay constant τ , through 3 fully-connected dense layers of decreasing size. �e 
ANN is trained on computer generated data that is created by taking a range of (mono) exponential lifetime 
decays (see Fig. 1a) that are chosen in the range τ = 0.5 − 5 ns and convolved with a super-Gaussian of width 
that varies in the range 3.6–6 ns. �e ANN was then tested on both simulated data not used in the training and 
also on actual experimental data.

In the latter case, the retrieval was compared to the results from the LSQ deconvolution. We found that in 
order to retrieve precise values of τ from test data provided by the camera it was necessary to also include noise in 
the training data. �e best results were obtained assuming two sources of noise: a Poisson-distributed component 
that is proportional to the actual signal, as expected for a photon detection process and also used in Ref.50 and 
a Gaussian component, see “Methods”. As shown in what follows, the ANN is applied to each individual pixel 
and can provide very similar results to a standard LSQ deconvolution albeit with a retrieval time of ∼ 8 s for a 
megapixel image, corresponding to 1000× gain in speed, if compared to our LSQ approach (the mean absolute 
di�erence between the two methods for the results shown in Fig. 2 was 0.14 ± 0.12 ns) and is thus a key compo-
nent in rendering megapixel FLIM a real-time technique.

Results—0.5 megapixel wide‑field FLIM
To illustrate the applicability of our SPAD array for FLIM data acquisition, we imaged a Convallaria sample 
with ‘high photon counts’ (HPC) at a 10 s acquisition rate (Fig. 2a–c) and with ‘low photon counts’ (LPC) at a 1 
second acquisition rate (Fig. 2d–f). �e HPC data-set was obtained by using a 504 ps gate shi� and exposure of 
≈ 330 ms. In order to achieve 1 Hz acquisition, we reduced the exposure to ≈ 33 ms per frame. Figure 2 shows 
that lifetime data can be retrieved for both the HPC and LPC data. However, LPC data analysis is more chal-
lenging due to the lower signal-to-noise ratio (SNR). In the examples shown here, the total photon count in the 
LPC data falls below 2700 photons per pixel, whereas the HPC data exceeds 8500 (the intensity values in Fig. 2 
are clipped to make dimmer structures more visible). Nonetheless, both the LSQ and ANN methods recovered 
similar mean lifetime values for both HPC and LPC data. �e mean lifetime and standard deviation values for 
the lifetime images in Fig. 2 are shown in Table 1.

One of the main bene�ts of the ANN is that it has the potential for being signi�cantly faster than LSQ. Using 
a pre-trained model (training time ≈ 38 min on a training set of ≈ 2 million simulated decay curves), the ANN 
retrieval requires 2.7–3.6 s to process the full image. �is is 388–1288 times faster than the LSQ method, which 
took 23.3–58 min in our tests (detailed times for each data-set are described in Fig. 2). We emphasise that we 
�t each pixel independently, and do not rely on ‘global �tting’ schemes, where data is averaged spatially and/or 
temporally52.

While Convallaria is a popular sample for testing FLIM systems53–56, the strong signal it yields is not neces-
sarily representative, for example, of the signal level from transfected mamallian cells. To show a more practical 
example, we provide FLIM data of cancer research relevant samples: �xed HT1080 (�brosarcoma) cells, trans-
fected with pcDNA3-Clover57 and expressing a protein with a single �uorescence lifetime (Fig. 2g,h). �e HT1080 
cell data was acquired using a 108 ps gate shi�, with a total ≈ 400 s acquisition time.

Similarly to the Convallaria results, the ANN and LSQ results match well quantitatively (absolute di�er-
ence between LSQ and ANN: 0.10 ± 0.05 ns). Our retrieved lifetime for HT1080 cells transfected with Clover 
is in good agreement with a previously reported value of 2.6 ns58. �e large size of the sensor allows imaging 
multiple cells, at high detail, across a large �eld of view simultaneously. We note that the acquisition time could 
be decreased by increasing the gate shi� and acquiring fewer time bins at the cost of reduced sampling of the 
�uorescence decay, and potentially less accurate lifetime recovery.

Results: 3.6 megapixel wide‑field FLIM
Finally, we present a 3.6 MP image of our Convallaria sample to showcase that very large �eld-of-views can be 
achieved almost trivially using the 0.5 megapixel SPAD array (Fig. 3). �e �eld of view in Fig. 3 is 618 × 650 
µ m with the same spatial sampling of 0.33 µm/pixel as in previous �gures. We acquired the data using a mosaic 
acquisition by moving the sample with ≈ 10% overlap between mosaic tiles. Crucially, our ANN method required 
only 36 s to recover lifetime information from this data-set. �is retrieval time could be shortened by processing 
each pixel (or batches of pixels) in parallel.

Table 1.   Mean and standard deviation of extracted lifetime values of data shown in Fig. 2. �e LSQ and ANN 
lifetime retrieval methods provide similar, compatible results. We note the consistency in the lifetimes for HPC 
and LPC data, which shows that we can retrieve reliable lifetimes even at relatively low photon counts.

Data LSQ (ns) ANN (ns)

HPC, Fig. 2a–c 1.29 ± 0.49 1.22 ± 0.27

LPC, Fig. 2d–f 1.20 ± 0.53 1.28 ± 0.34

HT1080, Fig. 2g–i 2.41 ± 0.29 2.31 ± 0.34
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Conclusions
We have demonstrated the application of the largest-to-date time-gated SPAD array for �uorescence lifetime 
imaging of biologically relevant samples. By exploiting the ability to vary the gate-shi� size between di�erent 
exposures of the camera, we showed that wide-�eld FLIM at 0.5 megapixel resolution is possible at 1 Hz acquisi-
tion speed. By performing a spatial mosaic acquisition, 3.6 MP �uorescent lifetime images are readily available. 
�ese could be scaled to even larger �elds of view and shorter acquisition times by using bespoke and rapid 
translation stages. In this work we retrieve mono-exponential lifetimes as this has less stringent SNR requirements 
compared to multi-exponential �tting42,59. However, future work could of course extend this multi-exponential 
decays.

While fast analysis methods such as the phasor approach46, or methods utilising advances in machine 
learning49,50, including our own ANN, are important parts of a high-speed FLIM systems, the biggest impact 
on imaging low-signal biologically relevant structures at sub-micron resolution at large FOV is delivered by the 
continuous improvement of SPAD array technology with e.g. increases also in �ll factor and quantum e�ciency60.

Methods
Time‑gated imaging.  �e imaging is based on a 1 MP SPAD image sensor34. In its current version, the 
megapixel array accommodates multiple functionalities, which leads to only half of the sensor being read out in 
the gated mode used here34. �e camera has 7% �ll factor and 10% photon detection probability at 510 nm. To 
acquire the �uorescence lifetime of a sample, the camera is operated in the time-gated mode. Laser pulses are 

Figure 3.   Mosaic image of 8 tiles of Convallaria sample stitched together, yielding 3.64 MP data (1875×1942 
pixels) corresponding to a �eld of view ≈ 618 × 650 µ m (or, equivalently, a sampling of 0.33 µm/pixel). �e 
total acquisition time was approximately 16 minutes in HPC mode (that can be reduced to 10–20 s by operating 
in low photon count mode) with a processing time of ≈ 36 s using ANN deconvolution. Image stitched using 
BigStitcher ver. 0.3.6 https​://image​j.net/BigSt​itche​r51.

https://imagej.net/BigStitcher
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repeatedly exciting the sample; the photons emitted due to �uorescence will be detected by the camera in multi-
ple frames with shi�ing gate window, resulting in an image sequence per acquisition. For each frame with a �xed 
gate position, 255 binary frames are summed to create an 8-bit image (9-bit images are obtained by summing 
two 8-bit registers). To obtain the full characteristic of a single-exponential �uorescence decay, the starting gate 
position is tuned to be prior to the laser excitation. �e gate with average width of 3.8 ns over all pixels is then 
shi�ed �nely between each frame by a �xed time. Illustration of gate-shi�ing is shown in Fig. 1a. We note that we 
pre-process the data by performing background subtraction and pile-up correction, where the latter is accounted 
for, following equation 1 in Ref.47 and adopting the same nomenclature:

where Icorr is the pile-up corrected counts, Imax is the maximum possible photon count (depending on the 
bit depth e.g. 255 for 8-bit data), and Irec is the actual recorded value at a particular pixel. �e background is 
removed by taking the average of �rst few frames, before the decay signal is observed, and subtracting it from 
all the frames.

We threshold out any pixels that have fewer than Ntot photon counts in total (i.e. integrated over all time 
gates) in order to eliminate pixels that have no signi�cant signal. Photon counts drop towards the le� hand side 
of the sensors due to a decay in the strength of the electronic drivers that distribute the signal controlling the 
time gates. We account for this non-uniform response of the SPAD array34 with a ‘sliding thresholding’ of the 
data, going from Ntot = 1300 (right hand edge of the image) to Ntot = 50 (le� hand edge).

We note that despite the 7% �ll factor, the small pixel pitch of 9.4 µ m (corresponding to a pixel active circular 
area of 6.18µm2 ) of the sensor provides su�cient sampling for microscopy at common magni�cation range.

Data analysis—LSQ deconvolution.  As brie�y explained in the introduction in the main text, the meas-
ured data is a convolution of the impulse response function (IRF) and the underlying �uorescence decay (see 
Eq. 1). Technically, the IRF of a FLIM system depends on the excitation source and the detector (in our case, the 
gate length of each SPAD in the array). However, since the nominal pulse width of our laser pulse (<47 ps) is 
signi�cantly smaller than the gate length of our SPADs (average 3.8 ± 0.2 ns), the contribution to the IRF from 
our laser source is negligible.

We modelled the IRF as a generalised Gaussian function (or super-Gaussian) at each pixel b as

where t is time, t ′ is the position of the gate, N the Gaussian order, and wN is given by the full width at half maxi-
mum (FWHM) of the gate through the following relation:

We measured that the average 10% to 90% intensity rise time for the gate (evaluated over all the pixels) is 
(0.55 ± 0.08) ns34. �e order N of the super-Gaussian is chosen such that it matches the actual measured pro�les34. 
Namely, N = 6 in Eq. (3) yields a rise time of approximately equal to 0.61 ns.

�e �uorescence decay model used obeys the following equation:

where τ is the decay constant (i.e. lifetime), t0 is a temporal o�set, b is a constant that accounts for a signal o�set 
induced by a non-zero background and A0 is an amplitude parameter corresponding to the number of photon 
counts. Following Eqs. (3) and (5), we model the temporal response of our detection system through the function 
f (t) = gk(t) ⊛ d(t) , where ⊛ stands for mathematical convolution. We then apply a LSQ optimisation to the 
measured data that provides an estimate of [ w, t0, τ , b,A0, t

′ ]. Computations were implemented using MATLAB 
R2017b using lsqcurve�t function.

Data analysis—artificial neural network.  We use a custom ANN consisting of an input layer (IL), an 
output layer (OL), and three hidden layers (HLi, with i = 1, 2, 3 ) connecting IL with OL, as depicted in Fig. 1b. 
Each of these layers is formed by a fully-connected dense layer followed by with recti�ed linear unit (ReLU) acti-
vation function. �e IL (with n0 = 200 nodes) is fed with a �uorescence decay signal (normalised to the range [0, 
1]), i.e. with a 1D vector with as many elements as the number of gate shi�s (200 in our work). �en, the output 
of the IL is fed in cascade through the ANN, while the number of nodes of each subsequent HLi is decreased 
to: n1 = 100 , n2 = 50 , and n3 = 25 . Finally, the OL provides an estimation of the lifetime τ of the �uorescence 
decay. Computations were carried out using Tensor�ow 1.14.

Standard machine learning techniques require training with data-sets of su�cient size and quality. To this 
aim, we train our ANN only with synthetic data, i.e. with �uorescence decay curves-lifetime pairs that are gen-
erated numerically. Our training set consisted of 2 million datapoints. We trained using mini-batch gradient 
descent, with a mini-batch batch size of 128 using adaptive moment estimation (Adam) as our gradient descent 
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algorithm. Our loss function was the mean squared error (MSE) between the ground truth lifetime values of our 
mini-batches, and the corresponding ANN predictions.

In order to prevent overtraining the network, we validated the number of epochs to train for using a valida-
tion set of 1 million datapoints. We found that the models overtrained minimally, achieving a training set loss 
that was <10% smaller than our validation loss for all ANNs, and, upon prediction, we found that our test set 
loss was approximately equal to our validation loss.

Our test set comprised 1 million datapoints. For our 200 time-bin data, expressing our ground truths and 
predictions in terms of nanoseconds, we obtained mean squared errors of  0.0053 ns2 on our test set. Our errors 
had ∼ 0 mean and 0.072 ns standard deviation, and approximately 0 expectation. In other words, our estimator 
was unbiased, and, averaged over all the test-set lifetimes, gave predictions within error bounds of ±72 ps. For 
our 30 time-bin data, we obtained a test set MSE of 0.0634 ns2 . Our errors had approximately 0 mean, and 250 
ps standard deviation.

Including variability on gate width, centre position, lifetime, and lifetime curve height, allows us to account 
for the fact that the various SPAD pixels have slightly di�erent underlying electronic properties34. For the two 
cases (200 time-bin, 108 ps gate shi� and 30 time-bin, 504 ps gate shi�), we created two distinct neural networks, 
to match the input sizes of 200 and 30. For both of these neural networks, we created training, validation and test 
sets, all modelled according to Eqs. (1), (3), (4), and (5) . In order to facilitate good generalisation, our datasets 
all contained histograms modelled according to a wide range of parameters; this range was kept the same for 
both ANNs.

�e parameter ranges were: decay lifetime τ : [0.5, 5] ns, decay start t0 : [5, 10] ns, decay amplitude, A: [2, 
32], gate width wn : [3.6, 6] ns. Our range of lifetimes cover the lifetime expression domain of our dye, acridine 
orange. Variations in decay starting point arise from the signal transmission time di�erence for di�erent regions 
of the SPAD array. Decay intensity variations originate from various sources, such as the local concentration of 
�uoroscent dye caused by cellular structure. �e gate width variations are inherent to the SPAD array (see34).

Both LSQ and ANN deconvolution approaches retrieve �uorescence lifetimes one pixel at a time, and can 
therefore be used on data of any dimension. For the ANN approach we obtained a root mean squared error of 
0.0725 on a test set of ≈ 1 million synthetic data. �e ANN algorithm then takes (≈ 8.5 ± 0.5) s to predict the 
lifetimes of a 1024 × 1024 synthetic data set with 200 time bins on a Intel Core i7 10510U CPU.

Noise model.  We experimentally con�rmed that the noise model in our experiments was best described 
by a mixture of Poissonian (due to photon counting statistics) that scales as the square root of the signal and 
Gaussian (electronic) noise.

By analysing the �rst and last ten time bins (in which no �uorescence signal is present) of 3, full 0.5 MP 
images, containing 135 thousand non-background pixels, we found that the Gaussian noise had an approximately 
0 mean and a standard deviation of around 2.3 counts. In order to add �exibility to our model, we added to each 
histogram Gaussian noise whose mean and standard deviation were randomly drawn from [−2, 2] and [0, 5], 
respectively.

Poissonian noise is constantly present in our training/testing/experimental data, by nature of the measure-
ments. Further, we tested the robustness of our method on varying levels of background (Gaussian) noise for 
various lifetimes i.e. 1, 2.5 and 4 ns. For each noise distribution scenario, we kept the decay intensity parameter, 
A, the decay start t0 and the gate width wn constant, and tested on 100 histograms. We found that even for Gauss-
ian noise with a standard deviation of 10 counts/pixel, which is  4× larger than the experimentally measured 
standard deviation, and 2× larger than the highest training noise level, we still retrieve the correct mean lifetime, 
with a typical std. dev. of 130 ps and worst case std. dev. of 199 ps. �is behaviour was found to be consistent 
over all the tested lifetimes.

Figure 4 shows the lifetime retrieval performance of both the LSQ and the ANN methods. For this benchmark, 
we generated 9 sets of synthetic curves following the convolution model described above. Each set of curves had 
constant lifetime decay τ within the range [0.75–4.75] ns, and randomly varying noise from curve to curve within 
the set. Orange and blue dots represent the mean of the lifetime values retrieved with the LSQ and the ANN, 
respectively, while error bars correspond to their standard deviation. Both methods provide lifetime estimates 
in excellent agreement with the ground truth data.

Imaging set‑up.  We acquired the data on a custom-built epi-�uorescence microscope, with an Olympus 
20 × 0.4 NA objective with an f = 250 mm tube lens (or Nikon 40 × 0.75 NA objective, and f = 100 mm tube 
lens for 1 Hz acquisition) air objective, and a FITC emission/excitation �lter and dichroic mirror set. For the 
illumination source, we used HORIBA DeltaDiode laser diode model DD-470L, nominal peak wavelength 470 
nm spectral Full Width at Half Maximum (FWHM) 10 nm, nominal pulse width of 47 ps, and a nominal pulse 
energy of 15 pJ. �e repetition rate of the diode was set to 25 MH–7 nsz.

Mammalian cells, culturing conditions and transfections.  HT1080 cells were maintained in Dul-
becco’s modi�ed eagle’s medium (DMEM), supplemented with 10% foetal bovine serum (FBS), 2 mM L-glu-
tamine and 1 × PenStrep. Cells were maintained in 10 or 15 cm TC-treated plastic dishes at 37 ◦ C and 5 % CO2 . 
HT1080 cells were transfected using Amaxa nucleofector Kit T, program L-005. Cells were transfected with 5 
µ g DNA (pcDNA3-Clover) following manufacturers guidelines and replated on 6 cm TC-treated plastic dishes 
overnight at 37 ◦ C, 5% CO2 . 35 mm glass bottom MatTek dishes that were coated with laminin 10 µg/ml diluted 
in PBS and le� overnight at 4 ◦ C. Cells were then collected and replated onto the dishes and incubated for 24 
hours at 37 ◦ C, 5 % CO2 . A�er, the dishes were washed twice with PBS before �xing with 4 % Paraformaldehyde 
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for 10 min. �ese were then washed three times with PBS before slight drying. 10µ l Fluromount-G (without 
DAPI) was added on top of the cells and a 19 mm glass coverslip was added on top to seal the cells in the dish. 
Dishes were kept in the dark until imaging.

Data availability
Data relevant to the �gures in the manuscript can be obtained from https​://doi.org/10.5525/gla.resea​rchda​ta.1012.
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