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Preface

X-waves, O-waves, Bessel beams or more generically Conical waves are char-
acterized by quasi-stationary propagation in all media, they have a central,
intense peak that does not diffract and does not spread in time, they have
potentially tunable phase and group velocities and they have even proved
to be robust against nonlinear losses. These features are maintained both in
the linear regime and at high intensities rendering them unique with respect
to other stationary wave-packets, such as the soliton.

As with many discoveries, the dramatic beauty of nature played a key role.
In the late nineties a series of experiments in world-wide laboratories were
investigating the long range filamentation of ultrashort laser pulses in a va-
riety of media, ranging from glass to air. One of the most beautiful features
of this was the generation of white light spread over a cone which, when ob-
served through a spectrometer, showed incredible shapes and colors and an
X-shaped multicolored spectrum that was cut in two by a strong rainbow
of light with paraboliclike modulation patterns: an object of such beauty
demanded an explanation!

Put in very simple terms, the research described in this work is dedicated
to the understanding the beautiful features of these and similar spectra.
We shall describe the role and importance of Conical waves with a strongly
experimental approach: the first chapters will give the information necessary
to understand the physical processes that shall be treated later on. Many
of the topics covered may be found in excellent text books and the reader
will be referred to these for further reading. We shall then investigate into
some depth the various experimental diagnostic tools that have been devel-
oped by the authors and coworkers and how these should be used, or not
used, in order to derive the greatest amount of information possible regard-
ing the nature of ultrashort conical wave-packets. We shall focus mainly on
the role of conical waves in laser pulse filamentation. This indeed is a most
demanding and interesting regime where a correct use of the diagnostics
and full spatio-temporal characterization of the laser pulse shed new light
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on a process that has been attracting attention since its first prediction and
discovery in the 1960’s.
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1

Ultrashort laser pulse filamentation

In this chapter we shall review some of the physics and more important
aspects of ultrashort laser pulse filamentation in media with a Kerr nonlin-
earity. The best starting point for this is a description of the nonlinear effects
experienced by intense laser pulses propagating in dispersive media. Some
of these (such as Cross-Phase-Modulation or Stimulated Raman Scattering)
may not have an immediately obvious relevance to the case of ultrashort
laser pulse filamentation but understanding them will come in handy later
on.

1.1 Kerr nonlinearity: self-action effects

All materials, ranging from solids to low-pressure gases, possess a third or-
der optical nonlinearity and many of the associated physical effects are very
general, displaying common features in many different media. The origin
of the nonlinear optical response lies in the material response to an exter-
nal electrical field. This response manifests itself as a charge displacement
and, if the electric field becomes intense enough the charge displacement,
or polarization, becomes a nonlinear function of the field. We shall speak
of “self-action” effects when the propagation of the field is affected by the
nonlinear polarization it itself has induced. The basic coupling between the
optical field and the material occurs through outer shell or band electrons
and the temporal response of these interactions is extremely fast, less than
1 fs, and may be considered as instantaneous at optical frequencies. This
nonlinearity is often referred to as the Kerr nonlinearity. However slower
molecular motions may also contribute to the nonlinear response and may
lead to very large nonlinearities. An example is Stimulated Raman Scatter-
ing that shall be treated below.

In general it is possible to adopt a perturbative approach to the description
of the nonlinear material response and write the material polarization vector
in the frequency domain
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PE)=xVYE+x?PEE +x®EEE + - . (1.1)

The first order term in this Taylor expansion will give the linear material
response, usually described through the refractive index n = /1 + x(1). The
second order term is present only in non-centrosymmetric media, e.g. certain
crystals or organized organic molecules. The majority of known elements
aggregate in an amorphous state (gases, liquids, glasses etc.) and for these
the lowest order nonlinearity is represented by the y®) tensor, i.e. the Kerr
nonlinearity. Collecting a common E-term in Eq.1.1 the refractive index may
be written as

3 3
n=1/1+x0 + @ A2 ~ng + —xO|4%, (1.2)
4 8710

where E = Aexp|j(kz — wt)] is the electric field and ng is the linear refrac-
tive index. The 3/4 multiplicative constant that appears here is due to a
degeneracy that arises in the case of isotropic media (so that only diagonal
terms in the tensor are different from zero and are also equal to each other)
and in the case in which all interacting fields have the same frequency (see
for example Ref.[1] or [2]). So we see that the Kerr term gives rise to an
intensity dependent refractive index that may in general be complex. Let
us now derive a wave-equation for the envelope A of the electric field into
which we may insert the expression in Eq.1.2. A convenient way to derive
the envelope equation is to Taylor expand the wave number k = k(w, |A|?)
around the carrier frequency wg and the electric field intensity |A|?. Retain-
ing only the lowest order of the group velocity dispersion (variation of the
group velocity as a function of the light frequency) and under the paraxial
approximation! k2 + kz << k3 we find:

k—ko=k— \JkZ, — (k2 + k2)

1k2 + k2 1 ok
k— ko, — 3 Fo Y~ K (w — wo) + ikzg(w —wo)? + 6[A\2|A|2’ (1.3)

where kg, indicates the longitudinal component of k£ calculated in wgy. From
here on primed variables will indicate derivatives with respect to w. Eq.1.3
is written in Fourier space but may be easily converted to direct space by
replacing

! This implies that the transverse components of the wavevector are small
with respect to the longitudinal term, i.e. the propagation angles with
respect to the propagation direction are small.
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The resulting equation reads
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If we use the deﬁnition of the group velocity, v, = 1/k/, and take 0k /0(A?) ~
(3/8n0)(wo/c)x® (from Eq.1.2), the evolution of A in the coordinates mov-
ing at the pulse group velocity (i.e. 7 =t — z/v,) is given by

0A 1 w2 A K'0*A 3w
UCERET™ _?WJFT

24
ig, oVl 3| AI2A = 0. (1.5)

The first term of this equation accounts for the z-evolution of the envelope A,
the second term describes the effects of diffraction, the third term accounts
for material dispersion and finally the last term, which we shall now analyze
in detail, accounts for the nonlinearity.

Let us start by considering this equation in a much simpler context, so as
to avoid any un-necessary complications while retaining the main physical
effects. We may neglect the diffraction term, i.e. we consider the simpler 1D
model, and we consider very long pulses so that we may neglect the second
order time derivative. We then have a simple equation that allows us to
isolate the effect of the nonlinearity alone

0A . 3w0

e 1A%
52 ]SCTZ()X |A|“A. (1.6)

In general the envelope A may be a complex quantity so that A =
|Alexp (j¢). The nonlinearity too will typically have a real and an imag-
inary part (in a similar fashion to the linear refractive index close to an
absorption peak), x® = R[x®)] + j3[x®)]. By equating the real and imag-
inary parts of Eq.1.6 we find [1]

(9|A’ 3(,U0(\ (3) 3
— A 1.
S = gl S ®IAP, (L.7)
8(75 3(4)0 (3) 2
Al~. 1.
7= = Al (18)

From these two equations we may immediately conclude that the imaginary
part of the nonlinearity will lead to a modification of the envelope amplitude
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(in particular the minus sign in front of the right hand term indicates that
the amplitude will decrease) while the real part of the nonlinearity will
affect only the envelope phase. Note that is in keeping with what happens
in linear matter-wave interactions: the imaginary part of the refractive index
is related to an absorption, the real part describes the phase-accumulation.
The only difference here is that these effects now depend on the electric field
intensity. The equations may be written for the intensity I = |A|?

oI 5

5 —al — BI7, (1.9)
0

8(5 = nal. (1.10)

where § and « are the so-called nonlinear absorption coefficient and nonlin-
ear refractive index, respectively. In the first equation we have also included,
for generality, the linear absorption term.

The solutions to these equations are quite simple:

B al(0)e=**
1) = S Broa =y (1.11)
6(2) = $(0) + %m 1+ 510(1 - e—aZ)] (1.12)

1.1.1 Multiphoton absorption

Eq.1.11 describes an intensity-dependent absorption. This is often referred
to as multiphoton absorption and may be viewed as a “virtual” process
by which two photons from the pump are absorbed by passing through
an intermediate virtual state. For example a given material may have an
absorption band with a lower frequency limit w,. Linear absorption will
occur if the photon frequency is w > w, and the material will be transparent
if w < w,. However, if the intensity is high enough then it is possible for two
photons of frequency w = w, /2 to be absorbed. This process is obviously not
limited to just two photon interactions: we may have any number of photons
K with frequency w = w,/K participating in the absorption. Therefore the
absorption cross-section Sx will proceed in a step-like fashion as a function
of the optical frequency, with sharp jumps each time the frequency reaches
a multiple of w,. The generalized equation that describes the multiphoton
absorption process is

0A

0z

whose less trivial solution is

—ﬁ;ﬂAy?K—?A, (1.13)
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Fig. 1.1. Nonlinear absorption as a function of propagation distance Z.
K=1 is simple linear absorption, K=2,3,4 refers to 2, 3 and 4 photon ab-
sorption. Nonlinear higher absorption leads to a much faster absorption rate
during the early part of the propagation but the loss soon levels out, satu-
rating at some intensity level.

Iy
I= : 1.14
[1+ I Brz(K — 1)]Y/(E-1) (1.14)

Fig.1.1 shows the intensity evolution described by Eq.1.14 for four different
values of K: K = 1 corresponds to linear absorption which shows an ex-
ponential decay for all distances z. Nonlinear absoprtion on the other hand
is characterized by an initial loss rate that is faster than in the linear case
but it soon levels out, reaching a saturation level due to the fact that as the
intensity decreases so does the loss rate.

1.1.2 The nonlinear phase shift

Let us now assume that the imaginary part of the nonlinearity is zero and
consider the sole effect of the real part. Defining the nonlinear refractive
index as

3
= _—® 1.15
n2 8n0X ) ( )
Eq.1.5 becomes
04 Loy KA w IAPA =0 (1.16)
ary 2ky _2372+cn2 - '

It is a custom practice to factorize the impact of the phase intensity depen-
dence into purely spatial or purely temporal effects. Following this approach
we first consider the effect of an intensity dependent refractive index on an
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ultrashort laser pulse and for the most general case of a positive nonlin-
ear index, ng > 0. The tails of the optical pulse will have relatively low
intensity such that the nonlinear term has no effect. As the intensity in-
creases the refractive index will also increase, reaching a maximum at the
pulse peak. n will then decrease along the tail of the pulse until the low-
intensity linear value is restored. This will influence the pulse through the
phase ¢ = ¢(t) = (2m/A)n(t)z—wt. In general the refractive index will follow
the pulse intensity profile, will therefore depend on time and therefore also
¢ = ¢(t). This will give rise to a frequency broadening:

_do®)

dt -
On the rising edge of the pulse the frequency will be red-shifted, on the
trailing edge it will be blue-shifted. Such a frequency-broadening, usually
referred to as Self-Phase Modulation (SPM), is routinely observed in the
presence of high intensity pulses, e.g. in optical fibers (where the spatial
Kerr effect may be effectively ignored) but also in bulk media. The most
extreme manifestation of SPM is the generation of the so called white light-
or super-continuum. Ever since its first discovery and the proposal of a novel
white light laser source, supercontinuum has attracted much attention and
is still today a popular topic in laser research.
Let us now discard the temporal behavior of the laser pulse and consider
only the spatial Kerr effect. A close analogy may be drawn with the temporal
case: the low intensity tails of the spatial beam profile will not be modified by
the nonlinear term. Moving toward the central intense part of the beam the
refractive index will increase due to the Kerr term and reach a maximum at
the beam peak. When discussing the temporal Kerr effect we noted that the
time variation of the phase gives rise to a frequency shift that is maximum at
the points of highest slope. If we now take the transverse spatial derivative
of the phase ¢ = ¢(r) = 27/ MN)n(r)z — wt

_ do(r)

Ak = 1.1
il (118)

the maximum broadening of the beam wavevector spectrum occurs at the
points of maximum intensity variation. If the beam is taken with radial
symmetry the overall effect will be very similar to that of a lens. If no > 0
the beam will undergo what is called self-focusing (SF) and if ny < 0 the
beam will self-defocus. Fig.1.2 shows an example of the numerically eval-
uated evolution of a Gaussian beam full-width-half-maximum (FWHM) in
the linear regime (diffraction, dash-dot line) and in presence of self-focusing
nonlinearity (solid line). The beam contracts to a small diameter reaching a
minimum width. At this point, if the intensity is high enough to induce non-
linear (multiphoton) absorption, saturation of self-focusing will occur and a

Aw = (1.17)
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Fig. 1.2. Numerically calculated FWHM of the pulse fluence. The green
dash-dot line indicates the evolution of the FWHM in the linear regime
(diffraction), the solid red line shows the FWHM evolution in the presence
of SF Kerr nonlinearity and NLL as the saturating mechanism.

filament will form, as shown in this example.

We note here that one of the main points that must be considered when
treating ultrashort pulse SF and filamentation is that separating the physics
into purely spatial or purely temporal effects is acceptable only for a basic
comprehension but should otherwise be avoided. Even simple SF of ultra-
short pulses, if treated alone, cannot be correctly described without ac-
counting for the temporal dimension. For example in the presence of self-
focusing an ultrashort pulse may exhibit a strong temporal compression even
in normal group velocity dispersion ? (see Fig.1.8, e.g. z = 0.84 cm). This is
counterintuitive as one would expect GVD and SPM to increase the pulse
duration. Only by accounting for the full space-time dimension of the pulse
may the pulse compression be explained. Indeed SF will affect only the in-
tense, central part of the pulse. The leading and trailing wings will remain
unaffected. If viewed in (r,t) coordinates the pulse will assume a butterfly-
like shape with central peak that has grown in intensity and therefore has a
shortened temporal duration (and, of course, a shrinked diameter).

2 A short note on terminology. Strictly speaking the terms “normal dis-
persion” and “anomalous dispersion” refer to spectral ranges in which
dn/dw > 0 and dn/dw < 0, respectively. Extending such definitions to
the second order derivative we speak of “normal group velocity disper-
sion” (NGVD) and “anomalous group velocity dispersion” (AGVD) when
d*k/dw? > 0 and dk?/dw? < 0, respectively.
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1.2 Kerr nonlinearity: XPM and parametric interaction

In the presence of fields at different frequencies the Kerr nonlinearity may
lead to a strong interaction resulting in strong inter-pulse phase effects and
frequency conversion. The former is referred to as Cross-Phase-Modulation
(XPM) and the latter as Four-Wave-Mixing (FWM).

1.2.1 Cross Phase Modulation

We may start by separating the field into a strong and into a weak part.
This will allow us to linearize the problem and is appropriate for describing
the case in which the input field is composed of a strong field that excites
the nonlinearity and by a weaker signal. The total field can then be written
as A = Ap+ Ag, where P stands for the strong pump and the S stands for
the weak seed. Substituting this into Eq.1.16 and neglecting terms in the
weak field beyond the linear term, we find two equations, one for the pump
and one for the weak field

0Ap 1 _, K'0?Ap  ng
jiaz + —QkOVL P~ 555 + OWOH p|"Ap] =0, (1.19)
0As 1 _, K'OPAs  ma .
I ox VR LA = g TRy RlARPAs] =0 (120

The first equation describes self-phase modulation on the strong pump and
we have already seen this, but the second equation is new: it describes what
is known as cross-phase modulation (XPM). The strong pump induces a
nonlinear phase shift on the weak field and, interestingly, this phase shift
is twice as large as that self-induced on the pump. XPM may occur for
example between two waves with different frequencies or between waves with
the same frequency but different polarizations. An important consequence of
XPM is the possibility to observe modulation instability even in the normal
dispersion regime.

1.2.2 Modulation instability

Instabilities may occur in many types of nonlinear physical systems such as
plasma physics, fluid mechanics and nonlinear optics. Generally speaking,
optical instabilities can be classified as temporal or spatial depending on
whether light is modulated spatially of temporally after its passage through
the nonlinear medium. In one-dimensional systems such as optical fibers, the
temporal instability is a well-known effect that occurs through the interplay
between self-phase modulation and group velocity dispersion. When light
propagates through a medium with a self-focusing nonlinearity and anoma-
lous dispersion the instability manifests itself as a breakup of a continuous



1.2 Kerr nonlinearity: XPM and parametric interaction 9

n2>0, k>0 n2>0, k"<0 n2<0, k">0

05 2.5
2
0.25
15
>~ 0
1
-0.2
> 0.5
-0.5 0
Q
0.5
0.25
=~ 0
-0.25
-0.5
0.5 0 05-05 0 05-0.5 0 0.5
Q Q Q

Fig. 1.3. Top row: numerically calculated modulation instability gain pro-
files for the three cases indicated. The fourth case, ny < 0, k" < 0, is stable
and does not present an instability growth. All axes are in arbitrary units.
The bottom row shows the maximum gain curves for each case. Each graph
shows three curves corresponding to three different values of the input pump
intensity I: the arrows indicate the direction in which the curves move with
increasing I.

wave (CW) field into a train of ultrashort pulses. The spatial analogue, with
diffraction playing the role of anomalous dispersion, of this effect is observed
as the formation of a ring pattern on the transverse intensity profile. As we
have already pointed out when dispersion and diffraction are present si-
multaneously it is not possible to factorize the two effects and treat them
independently. G. Agrawal and his colleagues worked this problem out and
studied the modulation instability in this case. Details may be found in their
paper ([3]): the starting point is the NLSE, Eq.1.16. The origin of the spa-
tiotemporal instability is understood by considering the case of a CW plane
wave. Such a wave remains unchanged during propagation in the nonlinear
medium with the exception of an intensity-dependent phase shift. The sta-
bility of this steady state solution depends on whether small perturbations
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grow or decay with propagation. By using a standard linear stability anal-
ysis, i.e. by assuming that the electric field amplitude v/T is perturbed by a
quantity a = a(x,y, z,t) so that A = (V/T+a) exp(jyz) with v = (ko/no)n2l
and substituting into Eq.1.16 we obtain a differential equation for a. Assum-
ing a general plane wave solution for a, a nontrivial solution is found to exist
only if

Ak2k? = (k2 + k2 — kok{ 22) (K2 + k2 — kok{] 22 — 4vky), 1.21
0z T y 0 fra Y 0

where 2 = w — wp. If we take k; = 0 and k, = 0, this dispersion relation is
identical to that found for optical fibers. The steady state solution becomes
unstable whenever the longitudinal wave-vector k, has a negative imaginary
part since the perturbation will then grow exponentially with a gain given
by g = 2S(k,). Lets look at the top row of graphs in Fig.1.3. We have

graphed the gain as a function of the transverse k-vector K| = ,/k2 + k;

and (2 for three different cases: (i) na > 0, K > 0, (ii) ne > 0, ¥’ < 0 and
(iii) ne < 0, K” > 0. The fourth possible case is not shown as for ns < 0,
k" < 0 the input plane wave remains stable and all perturbations decay with
propagation. Note in Fig.1.3 how the gain profiles vary from one case to the
other, in particular we are interested in self-focusing media: for k” > 0 the
instability is unbound in (K, £2) space and has a strong X-shape while for
k" < 0 the instability is bound and has an O-shape.

The bottom row in Fig.1.3 shows the maximum gain curves for each case:
obviously the same X and O shapes are seen, depending on the signs of
k" and my. However we have now included the maximum gain curves for
three different values of the plane wave intensity. The arrows in the graphs
indicate the directions in which the curves move with increasing intensity.
Higher input intensities will lead to instability spectra that are further and
further shifted away from the k; = 0 and (2 = 0, i.e. the input plane wave.
Although it is not shown here but the absolute gain value also increases with
increasing input intensity.

One last comment is due regarding the case ny > 0 and k” > 0. Note
how for this case no instability is expected along the K| = 0 axis, i.e. in
optical fibers or in bulk media along the propagation axis. However Agrawal
analyzed the modulation instability of an axial plane wave (or equivalently
of a fiber mode) in the particular case in which the instability arises not
from one plane wave but rather from two coupled waves [4]. These will
be coupled through XPM and the analysis should be performed starting
from Eqgs.1.19 and 1.20, taking care to include in both equations SPM and
XPM terms. Proceeding in the same fashion outlined for the one-beam case
it is possible to derive a gain curve in function of the frequency detuning
(2. Therefore cross-phase-modulation may lead to an on-axis modulation
instability also in the normal dispersion case. Such a modulation instability
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Fig. 1.4. Numerically calculated modulation instability gain along K| =0
in the case of two input beams coupled through XPM. The arrow indicates
the direction of increasing input power. As the power increases the maximum
gain increases and moves toward larger frequency shifts. Only half of the
spectrum is shown as g(—£2) = g(£2).

has been observed experimentally in optical fibers: we shall see evidence of
a similar phenomenum also in the 3D case.

1.2.3 Four Wave Mixing

XPM highlights the effects of the Kerr nonlinearity on a weak field in the
presence of a much stronger, intense pump field leading to a modification
of the weak field’s phase. But it is also possible to observe, under similar
working conditions, generation of new frequencies and parametric amplifi-
cation. Here we will treat the case of Four-Wave-Mixing (FWM), which is
exactly what the name says: the Kerr nonlinearity will mix energy between
four different fields. This effect may occur in many different combinations so
that we speak of degenerate FWM when the four fields have the same fre-
quency (but have different polarizations or propagation directions) or simply
of FWM when two or more fields have different frequencies. FWM is com-
monly described within a context in which the interacting waves are treated
as plane waves. Eq.1.1 shows that the nonlinear polarization may be written
as P(E) x x"¥ EEE, so that if we take

14
E = 22:1 E, exp(j(knz — wpt)) + c.c, (1.22)
—
the polarization will also be composed of four terms. For example

3
P = ZX(3){[|E4|2 +2(|E1* + | Eof* + | Es*)] By +

+2FE1EoFs exp(jF+) + 2E’1E‘2E‘§’k exp(jf_) + - } (123)
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A first result of this calculation is the factor 3/4 in front of the nonlinear
tensor, which explains the same term introduced in Eq.1.2. This is followed
by a term that is formally identical to the nonlinear terms in Eq.1.19 and
Eq.1.20 and describes SPM and XPM. Finally we have the terms that de-
scribe FWM, where

I'y = (k1 + ko4 ks —kg)z — (w1 + w2 + w3 — wy)t, (1.24)
I' = (ki +ko—ks—kyq)z — (w1 +wo — w3 — wy)t. (1.25)

How many of these terms actually lead to a parametric interaction depends
on the relative phase between the field £ and the polarization P, and this
is given by I, _. Significant FWM will occur only if I' ~ 0, a condition
that is usually referred to as phase-matching. Further on we will be inter-
ested in FWM interactions between 2 degenerate (same frequency) fields
two different frequency fields so that the phase matching condition reads

Ak =2k — ks — ks =0 (1.26)
Aw = 2w — w3 —wq = 0. (1.27)

The nonlinear polarization may now be introduced into the NLSE, Eq.1.16,
and the procedure may be repeated for each polarization term so that we
obtain four coupled equations that describe the evolution and parametric
interaction of the fields. However this is usually done under a strong approxi-
mation: the transverse field evolution is ignored (or treated as constant) and
the pulse is treated as a continuous wave. In other words the fields involved
in the FWM process are treated as plane monochromatic waves. This is
particularly appealing due to the fact that the correspondingly simplified
NLSE contains only a z-derivative and the nonlinear polarization term and
consequently may be solved analytically.

Such a description is extremely useful and allows us to precisely model the
evolution of the four fields and study in detail the parametric interaction
between the fields in most cases of interest. However this model may break-
down and induce some confusion if the fields may no longer be modeled in
such a fashion. This will be the case in which the interacting pulses have
very short durations, or more generally very large frequency bandwidths so
that these overlap with each other. The same limitation will exist also if the
pulses are very tightly localized so that the spatial k-spectra of the pulses
will overlap. So in any situation in which it is not possible to separate the
pulses and treat them as distinct plane monochromatic waves even qualita-
tive reasoning with such a model must be treated with great care as it may
lead to erroneous conclusions.

Let us return to the phase-matching relations given in Eqgs.1.26 and 1.27.
We shall refer to these relations as the “linear” phase-matching conditions
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Fig. 1.5. Wave-vectors participating the phase-matched FWM processes
that lead to MI in normal dispersion (top scheme) and in anomalous dis-
persion (bottom scheme). In both cases phase-matching between on-axis
wave-vectors is due to the nonlinear corrections to the linear wave-vectors
(k1, k2, k3 and k4) arising from SPM and XPM. The dashed wave-vectors
correspond to terms that cancel each other out and may thus be negelcted
in calculating the phase-matching relations.

and indeed, they only account for the linear, intensity-independent, phase
terms of the interacting waves. However we have seen that if the intensities
are high enough then we may have an additional intensity-dependent phase
term due to SPM and, if degeneracy is broken (e.g. due to waves differing
in frequency) also due to XPM. In such cases these terms should be ac-
counted for leading to “nonlinear” phase-matching relations. Actually, if we
look again at Fig.1.4 we may wonder what are the physics lying behind the
intensity dependent gain profile. Indeed MI may be interpreted as a FWM
process in which two photons from the pump waves mix with two other
frequencies, one upshifted and the other downshifted. Lets look into this in
more detail and consider the situation of self focusing nonlinearity and only
the axial photons, i.e. the instability along k; = 0. This renders things a bit
simpler without losing physical meaning: optical fibers and channel waveg-
uides are typical systems that would be described by such an approach.
Only two cases show an instability, that is in anomalous group velocity
dispersion or normal group velocity dispersion (in the presence of two pump
waves). In anomalous dispersion it is often quoted, following Agrawal’s ap-
proach [5], that modulation instability may be interpreted in the frequency
domain as a phase-matched FWM interaction in which phase-matching is
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Fig. 1.6. Examples of FWM in fused silica with high intensity laser pulses
centered around 527 nm. (a) Calculated Ak versus signal/idler wavelength.
The dashed curve gives the linear Ak. The solid curve describes the Ak cor-
rected for XPM assuming that the pump has split into two pulses separated
by 1 nm in wavelength and both with equal intensity, I = 0.3 TW /cm?.
The dotted line is the same as the solid line but for I = 2 TW/cm?. (b)
Spontaneous appearance of blue and red-shifted axial components due to
FWM. The central pump has undergone strong reshaping due to filamenta-
tion. (c¢)-(f): seeded FWM experiments. (c) shows the 527 nm pump close
to the filament nonlinear focus without any seed. (d) In presence of a tem-
porally overlapped seed at 500 nm a weak signal appears at 557 nm due
to FWM. (e) The 527 nm pump and a relatively strong 550 nm seed and
both present but are not temporally overlapped so no interaction occurs. (f)
The pump and seed are now overlapped, FWM occurs with such efficiency
that cascaded frequency conversion occurs. Newly generated frequencies are
outlined with dashed ellipses.

enabled thanks to SPM on the pump wave. We have reproduced this reason-
ing in Fig.1.5. The drawings show the pump wave-vectors, k1 and ko, and
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the signal and idler wave-vectors, k3 and k4. In anomalous dispersion we
have Ak = 2k1 — k3 — k4 > 0. However if we account also for SPM, that will
lengthen the pump wave-vectors by a quantity 6k = nokgl, and for XPM,
that will lengthen the seed wave-vectors by a quantity 26k = 2nqkol, then we
end up with the situation shown in the bottom part of Fig.1.5. The dashed
terms will cancel each other out in the calculation of the total Ak so that, for
a certain value of the intensity I we will find Ak = 2k + 20k — ks — k4 = 0.
Altough both XPM and SPM need to be accounted for, this is equivalent to
stating that SPM enables phase-matching and thus the growth of instabili-
ties at well defined frequencies w3 4 = ck3 4n3 4. It is also clear that different
values of I will phase-match different frequencies thus explaining the in-
crease in the maximum gain frequency with intensity, shown in Fig.1.3. We
may now consider the case of normal dispersion: Ak = 2k; — k3 — kg4 < 0.
Adding SPM and XPM terms will not lead to phase-matching. However if
we break the degeneracy of the two pump beams and suppose that they have
different frequencies then we must start from Ak = k1 +ko—ks—k4 < 0, and
now we must account for XPM also between the two pumps. This leads to
the picture shown in Fig.1.5 for normal dispersion. Once again, the dashed
vectors will cancel out and we are left with a single XPM term so that
Ak = k1 + ko + 20k — k3 — k4 = 0. This explains XPM-induced phase-
matching in normal dispersion and the dependence of the gain profile on
intensity (Fig.1.4).

As an experimental example of XPM-induded phase-matching we show in
Fig.1.6 three different examples in which on axis FWM occurs the normal
group velocity regime. The experiments were carried out in fused silica with
an input pump wavelength of 527 nm, i.e. in the normal group velocity
dispersion regime, and the pump intensity was just above the self-focusing
threshold so that during the propagation the pulse contracts and reaches
a minimum diameter. Close to this nonlinear focus, high intensities in the
TW /cm? range are reached. The dashed line in Fig.1.6(a) shows the cal-
culated linear phase-mismatch Ak for varying signal and idler wavelengths.
The pump is assumed to have split by 1 nm wavelength due to the spatio-
temporal self-focusing process that may lead to pulse splitting close to the
onset of filamentation. Ak ~ 0 close to the pump but quickly increases due to
material dispersion. The dotted line gives the Ak accounting also for XPM
assuming an equal peak intensity in both pump pulses, I = 3 TW /cm?.
Ak = 0 for signal/idler wavelengths of 460 nm and 640 nm. Experimentally
we observed spontaneous amplification at these wavelengths just after the
nonlinear focus, as shown in Fig.1.6(b). The image shows the (6, ) spectrum
altough here we are interested on the wavelength features of the spectra. In-
deed the pump has undergone a strong spatio-temporal transformation but
the on-axis signal and idler wavelengths are clearly visible. The remaining
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images show the recorded spectra in the presence of an additional weak seed
signal. A weak FWM signal is measured (highlighted by a dashed ellipse
in Fig.1.6(d)). If the seed energy is increased we start to observe cascaded
FWM frequency generation (Fig.1.6(f)). These phase-matched FWM inter-
actions may be explained very well by accounting for XPM with split pumps
that have equal intensities, I = 0.3 TW/cm? (solid line in Fig.1.6(a)).

1.3 Stimulated Raman Scattering

So far we have considered the effect of “instantaneous” nonlinearities. These
are instantaneous in the sense that they are due to electric dipole excitations
and these occur on a time scale shorter than 1 fs. So, if compared to the few
fs oscillation time of an optical pulse we may safely neglect any effect due
to long build-up or decay times. But this is not always the case. Stimulated
Raman Scattering (SRS) provides a good example of a nonlinearity that is
characterized by a non-instantaneous response time and that therefore will
typically have a very different impact on the optical pulse evolution depend-
ing on the pulse’s duration.

The physical origin of the delay in the SRS nonlinear response may be con-
nected to the specific material energy levels that are involved. SRS does
not find its origin in the electronic dipole oscillations but rather in the ex-
citation of the rotational/vibrational levels of the molecules that compose
the material. These have much longer response times if compared to elec-
tron oscillations due to the larger inertia of the molecules. Therefore SRS is
most efficient for relatively long pulses, e.g. with temporal durations greater
than 10 ps, but this too depends on the specific material and the molecules
from which it is composed. SRS may be viewed as a transfer of energy from
the pump pulse frequency wp to the so-called Stokes frequency wg. The
frequency shift Aw = wp — wg, the bandwidth and the signal gain at the
Stokes frequency are determined by the specific excited molecule level or
levels. Generally speaking an organized, regular crystalline material, such
as silicon, will exhibit a large Raman gain within a small bandwidth (due
to the fact that all the molecular transitions are similar) whereas an amor-
phous material, such as glass, will exhibit a lower Raman gain albeit with
a much larger bandwidth (due to the larger number of possible molecule
configurations and thus the broader energy-level distribution).

SRS manifests itself in dispersive media as a signal build-up with gain at
the Stokes frequency. If we compare this to the case of FWM one may note
that SRS behaves as if it were a spontaneously phase-matched process. This
is due to the active participation of the medium in the frequency conversion
process or, in other words, due to the fact that the molecular levels are dis-
tributed in highly populated and widely spread energy/momentum states



1.4 Optical Filaments 17

so that phase-matching is always guaranteed. However it is also possible to
observe Four Wave Mixing mediated by the Raman nonlinearity. This will
only occur under similar conditions to those necessary for FWM mediated
by the Kerr nonlinearity, that is phase-matching between the pump, Stokes
and anti-Stokes (was = wp + Aw) frequencies. In such a situation the ex-
ponential gain at the Stokes frequency will be substituted by a parametric
oscillation between the Stokes and anti-Stokes signals that is mediated by
the Raman nonlinearity (and not by the Kerr nonlinearity).

Let us now return to the influence of the pulse duration. For pulses that are
shorter than the SRS build-up time, we may outline two different regimes:

i) transient SRS if the pulse spectrum is smaller than the Raman frequency
shift vg but larger than the Raman gain linewidth Avg,
ii) seeded SRS if the pulse spectrum is larger than vg.

SRS in these two regimes is usually much less efficient with respect to the
stationary regime (i.e. with long pulses). A further issue that must not be
neglected when treating the formation of the Stokes pulse is the role of the
Group Velocity Mismatch (GVM). GVM arises due to material dispersion
and more precisely to the fact that the group velocity of an optical pulse
is given by (dk/dw)™! so that if k¥ = k(w) the group velocities at different
frequencies will in general be different. This will lead to a temporal splitting
of the pump and Stokes pulses which in turn will strongly reduce the SRS
gain experienced by the Stokes wavelength. In fact in most cases this is the
greatest limitation for SRS with ultrashort pulses.

The role of SRS in optical filament formation and propagation has been
studied extensively but only in the regime of relatively long input pulses,
e.g. from 1 ns down to 100 ps. For such pulse durations SRS may be treated
as in the stationary regime for practically all materials. Vastly different is the
case of ultrashort laser pulses. It is known that SRS may play an important
role in soliton formation if the interacting wavelengths are chosen near the
zero-dispersion and Raman-solitons, i.e. solitons at the Raman wavelength,
may form. This is due to the fact that near the zero-dispersion wavelength
the GVM splitting length may be very large. However from what said above,
in the normal dispersion regime, or far into the anomalous dispersion regime,
we should generally expect ultrashort pulse to remain insensitive to SRS

1.4 Optical Filaments

In the early 60’s Chiao et al. predicted that a high intensity laser beam
under the action of self-focusing may take on what is now referred to as
the Townes profile and thus propagate without spreading [6]. The basic rea-
soning is that for a specific critical power the lensing effect will perfectly
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Fig. 1.7. Example of experimental layout used for observing filamentation
in condensed Kerr media (e.g. water or glass). The input beam is spatially
filtered (telescope + pinhole) and is then focused into the Kerr medium with
an f = 50 cm lens. The ouptut filament is collected with a telescope and the
spatial far-field is then obtained in the focal plane of an f = 150 cm lens. The
imaging spectrometer (illustrated in more detail in Fig.3.6) reproduces the
(0, \) spectrum. All numbers given here are purely as an example and have
been tested to give good results with an input beam that has a duration of
1.2-0.2 ps, central wavelength 400-1100 nm, energy 1-10 pJ and condensed
Kerr media such as liquids (ethanol, water, acetone etc.) or solids (fused
silica, BK7 glass, Lithium Triborate crystal, transparent polymers etc.).

balance diffraction. This finding was also corroborated by experimental ob-
servation of filamentary damage tracks in glass samples, tracks that were
clearly somehow defying diffraction [7].

This first simple theory laid the foundations for future investigations with
filaments. Shortly after, Lallemand et al. [8] showed a connection between
SF, filament formation and a reduction in the Stimulated Raman Scattering
threshold triggering a strong interest in optical filaments that is possibly
even stronger now than ever.

So, what is a filament? Curiously there is not a clear-cut definition of an op-
tical filament and one usually refers to the associated phenomena in order to
define it. For example, in many experiments using infrared lasers in gases the
filament is defined as a high-intensity peak propagating over many Rayleigh
ranges without diffracting. The filament length is defined as the distance
over which nitrogen fluorescence (excited by multiphoton absorption from
the high intensity peak) appears. In solids or liquids a much more obvi-
ous manifestation of filament formation is the generation of colored conical
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emission (i.e. a broad spectral broadening with different wavelengths emit-
ted at different angles) and strong super-continuum emission. These too are
a manifestation of the tightly focused high intensity peak propagating over
many Rayleigh ranges. A modern definition of the filament would depart
somewhat from Chiao’s original idea of the optical pulse creating it’s own
self-sustained waveguide and could be formulated as [9]:

a filament is o« dynamic optical pulse structure with an intense core that
is able to propagate over extended distances much larger than the typical
diffraction length while keeping a narrow beam size without the help of any
external guiding mechanism

Note the highlighted “dynamic”. It is generally acknowledged that the fila-
ment is not the result of the propagation of a stationary soliton-like struc-
ture. Chiao et al. showed that the nonlinear Schrodinger equation has a sta-
tionary solution, usually referred to as the Townes profile. This is just the
mathematical formulation of the idea expressed earlier on based on the bal-
ance between SF and diffraction. However it is now known that the Townes
profile is not stable. Any small perturbation from the critical power will lead
either to collapse or to diffraction. Clearly, although the Townes profile may
be a good candidate as an attractor for the initial self-focusing dynamics, it
is unlikely to be sustained in any way over long propagation distances. We
are not particularly interested in the case in which the Townes profile evolves
toward a diffracting beam. Rather the question arises as to what limits an
unphysical catastrophic collapse of the self-focusing beam. There are many
possible limiting mechanisms that will lead either to a forced defocusing of
the pulse or to strong (nonlinear) losses that will affect the high intensity
collapsing peak. These may be

e nonlinearity saturation [10]: a higher order nonlinearity of opposite sign
to the SF Kerr nonlinearity

e self-generated plasma defocusing [11]: extremely high intensities will lead
to multiphoton ionization in the medium. The generated electrons will
lower the medium effective index and thus give rise to a defocusing effect

e nonlinear losses [12]: the imaginary part of the nonlinearity will induce
multiphoton absorption. This depends directly on the pulse intensity and
will thus influence the high intensity regions that are self-focusing

e Stimulated Raman Scattering (SRS): it is a possible energy dissipation
mechanism proportional to the pulse peak intensity and that may there-
fore limit SF

e group velocity dispersion, GVD [13]: it is well known that GVD will
promote pulse-splitting in time [14]. Although this will not saturate SF
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Fig. 1.8. Numerically calculated evolution of the temporal on-axis profile of
a pulse propagating in the presence of a SF' Kerr nonlinearity. The saturating
mechanism is NLL. Initial space-time focusing leads to a pulse compression,
followed by pulse splitting as a result of pump depletion due to nonlinear
absorption and replenishment of the central peak that finally splits one more
time.

it will shift energy dividing it between the two split pulses and therefore
increase the power threshold for catastrophic collapse.

In general, depending on the material and pulse central wavelength one of
these mechanisms may dominate although in some cases limiting may be
due to a combination of these.

We briefly note that although in principle a saturating x(®) nonlinearity
may actually give rise to a true soliton state, no experimental evidence has
been given in this sense. It has also been numerically demonstrated that
in real world cases the intensities required for such a soliton formation are
actually higher than the thresholds for any of the other listed nonlinearities,
so these will step in at an earlier stage effectively acting as the true limiting
mechanism [15].

We may conclude by stating that the filament will therefore appear as a
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dynamic competition between self-focusing and some saturating or defocus-
ing mechanism. This may eventually involve successive focusing-defocusing
cycles that may give the overall impression of a stationary-like propagation
but it is actually far more complex.

1.5 Physical phenomena associated to filamentation

We have already pointed out that filaments are characterized by a strong
self-focusing that is then followed by the formation of a high intensity peak
that propagates over a long distance. However filamentation may manifest
itself in many different ways. The interesting point is that these features
appear to be common to all media, input pulse wavelengths and durations
(within the ultrashort pulse regime).

e position of the nonlinear focus: a linearly propagating beam that has
passed through a lens will focus at a certain distance that is determined
by the lens focal distance and by the beam diameter at the lens. A col-
limated beam will not focus at all. Spatial self-action leads to a focusing
distance even for a collimated beam and with a lens the nonlinear focus
is shifted nearer to the lens with respect to the linear case (see Fig.1.2).
In order for this to occur the beam should have a power that is larger
than a critical power defined as [16]

)\2
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871'710712 ( )

A collimated beam with P > P, will focus (due to the nonlinearity) at
a distance given by [16]

0.367Zg
V(P Per)1/2 — 0.852]2 — 0.0219

where Zp is the beam Rayleigh range. In the case of a beam that has
passed through a lens with focal length f the collapse, or nonlinear focus,
position may be found as

Inp = (1.29)

! ! + ! (1.30)
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e super-continuum (SC) emission: with this term we indicate the genera-
tion of an extremely broad-band, coherent emission with a low angular
divergence. The continuum may span more than 1 octave.

e conical emission (CE): broadband emission is observed also at angles with
respect to the propagation direction. The emission angle increases with
the frequency shift with respect to the pump frequency. The nature of
CE is the main topic of this work.
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pulse splitting and temporal compression (see Fig.1.8): space-time cou-
pling has already been described as the mechanism leading to pulse-
compression in the presence of SF and normal GVD. During filament
formation the pulse will split and the daughter pulses will be further
temporally compressed. As an example, a 1 ps pump pulse will split into
two pulses with durations of the order of 40-50 fs. The energy balance
between the two pulses may favor one or the other or a possible strong
unbalance may arise due to propagation effects such as absorption of the
trailing pulse due to the self-generated plasma from the leading pulse.
This can lead to the isolation and survival of a single, temporally com-
pressed, intense pulse. Filamentation may therefore be considered as a
potential novel laser pulse compression technique and single cycle dura-
tions may be achieved [17].

intensity clamping: the peak intensity if the input pulse may increase
by some orders of magnitude during the filamentation process. The final
peak intensity actually reached will depend on the material character-
istics. In gaseous media, for which peak intensities of the order of tens
of TW/cm? have been reported, the main limiting mechanism is related
to self-generated plasma defocusing. In solid or liquid media the role of
plasma defocusing is usually somewhat reduced, maximum intensities of
the order of 1 TW/cm? are found and the main limiting mechanisms
are related to multiphoton absorption and GVD. In any case it has been
shown that in both gaseous ([11, 18, 19]) and condensed media ([20]) the
filament will reach a maximum “clamped” intensity level. On the one
hand this may help to explain why, for example the maximum blue-shift
due to SPM is independent of the pulse energy above a certain critical
value but on the other it also poses possible limits for the use of fila-
ments in applications that require high peak intensities such as extreme
ultraviolet generation.

pulse mode self-cleaning: it has been observed that the far-field profile of
the conical emission originating form the filament exhibits an extremely
high beam quality [21]. This remarkable feature is of great importance for
applications. Seeded parametric interactions in air filaments have shown
the possibility to obtain efficient wavelength conversion combined with
a notable increase in pulse shot-to-shot stability (ascribed to intensity
clamping) and beam quality ([22]).

spatial robustness: the intensity peak associated to the filament is highly
localized in space. Typical filament diameters are of the order of 100 pym
in air and 10-40 pm in condensed media. However this tightly localized
peak is surrounded by a large background that acts as an energy reservoir
continuously refueling the central hot core. This feature is at the basis of
the filament robustness to spatial perturbations such that filaments may,
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for example, survive propagation through scattering media such as fog
and clouds ([23]).

All these features render filaments extremely attractive for a number of ap-
plications such as waveguide writing in glass-materials, nonlinear frequency
conversion, extreme ultraviolet generation, atmospheric lightning protection
and many others.

1.6 Filamentation models

The aim of this section is just to give a short overview of the most impor-
tant models used to describe filamentation of ultrashort pulses. This is by no
means meant to be exhaustive but references are given for further reading.
Filamentation is a rather robust effect and may occur with pulses of practi-
cally any duration. Ultrashort laser pulse sources have become common in
research laboratories only in the last twenty-or-so years. Before this filamen-
tation was studied and modeled using much longer (in the 30-1000 ps range)
pulses. The physics in the nanosecond (ns) or picosecond (ps) regime may be
quite different due, for example, to much higher plasma generation and ab-
sorption, lower material damage threshold, temporal modulation instability
and pulse breakup. Experiments with ns pulses were described either within
the self-guiding model, based on the spontaneous formation of the Townes
profile as discussed above, or with the so-called moving focus model. These
models were then extended also the femtosecond regime. We shall therefore
give a brief description of these, and other models, some of which are still
currently used.

1.6.1 The self-guiding model

The self-guiding model originated from the idea that the Townes profile is
a stationary state of the nonlinear Schrodinger equation [6]. A spontaneous
reshaping of the input Gaussian pulse into the Townes profile could therefore
explain the non-diffractive, tightly localized peak observed in filaments. It
is also reasonable to expect such a spontaneous reshaping as the Gaussian
profile and the Townes profiles are very similar (see Fig.1.9) and it has
indeed been experimentally observed [24]. However it is now recognized that
although the initial SF dynamics may lead to the formation of the Townes
profile, the filament is not simply a propagating Townes wave-packet. The
Townes profiles is unstable and will thus “explode” under the effect of small
perturbations. One may therefore study the effects of this explosion or, more
precisely, study the modulation instability of the Townes profile in order
to understand if and how the evolution of the Townes profile may explain
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Fig. 1.9. Comparison of the Gaussian (red, dashed line) and the Townes
profile (blue, solid line). All units are normalized.

filamentation. This will be topic of one of the following chapters.

Often one may find other terms such as “self-channeling” or “self-trapping”.
These terms, along with “self-guiding”, are not always understood in the
same manner in literature. Details, such as the role of the self-generated
plasma in the balancing mechanism, may change from one case to the other,
but overall it should be intended that these terms indicate simply the absence
of any external guiding mechanism ([9]).

1.6.2 The moving focus model

The moving focus model ([25]) starts from the assumption that the laser
pulse may be divided into independent time slices and that the effect of
collapsed time slices will not influence in any way subsequent propagation.
This is true only when physical effects that couple the various time slices
together, such as GVD or plasma generation/defocusing, remain weak.
The filament is then formed by the different time slices, each with a different
peak power, focusing at different distances, according to Eq.1.29: the central
time-slice will have the highest power and will thus determine the position of
the nonlinear focus. Time slices further away from the central one will lead
to focusing at increasing distances. However it is important to note that this
simple model fails in the case of a beam that has passed through a lens as the
nonlinear focii of all time slices occur before the linear focus distance. This
is in contradiction with experiments and numerical simulations performed
with the NLSE. This shortcoming may be explained by noting that coupling
between different time slices cannot be neglected. This is true even in air that
has very low GVD but also suffers strong self-induced plasma-defocusing
effects.
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1.6.3 Dynamical spatial replenishment

The self-guiding and moving-focus models do not account for the temporal
evolution of the pulse and therefore oversimplifies the full dynamical picture
that emerges that was first highlighted in numerical simulations [26]. Self-
focusing creates an intense leading peak that will create a defocusing plasma
in its wake and will also suffer nonlinear losses. The generated plasma will
be strongly reduced so that the beam may shrink once again due to the still
active SF. This cycle may repeat itself many times within the same filament
thus leading to long-range propagation.

1.6.4 The (extended) nonlinear Schrédinger equation

An equation cannot be considered as a “model” in the sense used above. Nev-
ertheless we shall describe here the extended nonlinear Schrédinger equation
(NLSE) as it is the prototype equation that is most widely used to model ul-
trashort laser pulse filamentation. We use the term “extended” in the sense
that the NLSE actually only accounts for diffraction and Kerr nonlinearity.
However it may be easily extended so as to include many other effects rang-
ing such as nonlinear losses, plasma generation and plasma-induced absorp-
tion, higher-order nonlinear effects, Raman nonlinearity and so on. Details
of the actual equation used in the numerical simulations shown in this work
may be found elsewhere (see e.g. Refs.[27, 28] ) and Chapter 4 is devoted
to an in depth description of how to implement a numerical code based on
this model.

The nonlinear equation used in simulations may be expressed in terms of
the Fourier transformed envelope &(r,w, z) = FT[E(r,t, 2)]:

2iK0E )0z + V3 + (k? — K?)|€ = —FT{N(€)}, (1.31)
N(E) = ko(2P"2 22 - ’“20’) iTBx|EI2K2) €. (1.32)
ng ngpe

This particular model accounts for diffraction, dispersion wvia the relation
k(w) = n(w)w/e, Kerr self-focusing (ng = 3.2- 10716 cm? /W in water), mul-
tiphoton absorption (Bx = 2-107% cm!? /W' K = 10 in water at a wave-
length of A = 1055 nm), defocusing by the plasma with density p described
by Op/0t = (Br/Khwo)|E|?K, space-time focusing and self-steepening via
the operators K = ko -+ kj(w—wp) and T = 14 (i /wg)d/t. pe = (eom/e®)w?
denotes the wavelength dependent critical plasma density.

In the next chapters we shall see many examples and situations in which
this equation is applied with success and reproduces even at a quantitative
level experimental measurements.
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Fig. 1.10. Near-field intensity profile (shown over 6 decades) evolution of a
527 nm, 200 fs laser pulse undergoing filamentation in water at five different
distances just after the nonlinear focus at (a) 3 cm, (b) 3.2 cm, (c¢) 3.4 cm, (d)
3.6 cm, (e) 4 cm. (a) to (e) include only second order dispersion (k") effects.
(f) is the same as (e) but the full material dispersion and plasma generation
are accounted for. (g) (k. , ) spectrum corresponding to the (r,¢) intensity
profile shown in (e).

1.6.5 The X wave model

The last years have seen the rapid advance of a new approach to filamen-
tation, what we may call the “X wave” model. This model is based on the
interpretation of filamentation in terms of the spontaneous generation and
successive dynamical interaction of conical wave-packets. The particularity
of conical waves is the energy flux that occurs along a conical surface that
leads to stationary propagation, i.e. they are characterized by a central in-
tense peak that propagates without diffraction and without dispersion. As
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we shall see the generic conical wave is best studied and described in the
Fourier (k) ,w) domain. The most general form of the conical wave then
becomes k| = /k? — k2 where stationarity is imposed by taking the longi-
tudinal wave-vector k. to be linear function of frequency,

k. = ko + k{2 (1.33)

X waves, so-called due their evident “X” shape in both the near and the
far-field, are a specific example of conical waves that are stationary in the
normal group velocity dispersion regime. The spontaneous formation of X
waves in the presence of nonlinearity was first demonstrated by P. Di Tra-
pani et al. [29] in a crystal with second order nonlinearity. The same concept
of conical waves was later used by Dubietis et al. to explain certain anoma-
lies observed related to the propagation of laser pulse filaments [30, 12]. By
placing a pinhole in the path of the filament such that only the very cen-
tral high-intensity peak was allowed to pass through, Dubietis observed that
the filament was effectively killed and further propagation was dominated by
strong diffraction. On the other hand, placing a stopper in the filament path
so that now only the central spike is blocked, the filament reforms almost
immediately after the obstacle and continues propagating as in the unper-
turbed case. This was interpreted by assuming that the filament is actually
a conical wave so that the central intense peak results as an interference
effect, continuously refilled by a large yet low-intensity surrounding energy
reservoir. Finally, using numerical simulations, Kolesik et al. clearly proved
that filamentation in condensed media may be interpreted as a dynamical
interaction between X waves that form spontaneously within the filament
[31].

The X wave model takes these ideas one step further: the spontaneous evo-
lution of a Gaussian pulse in a Kerr medium is interpreted as a spontaneous
reshaping into one or more X waves. All subsequent features of the pulse
propagation, e.g. pulse splitting, conical emission and any nonlinear inter-
actions, are intrepreted treating the pulses as X waves. This implies for
example that phase and group velocities must be accordingly corrected with
respect to those expected for Gaussian pulses or that nonlinear interactions
are no longer treated as interactions between plane waves but rather between
X waves. We underline that this model does not affirm that X waves (in the
sense of truely stationary solutions to the wave propagation equation) are
actually formed during the filamentation process. Indeed the tails may ap-
pear to decay at a different rate than that expected for the “true” X wave
and both measurements and numerics clearly highlight that the filament
propagation is a strongly dynamic event that does not seem to show any
particular stationary behavior. Rather, the model lies on the assumption
that the input pulse will try to evolve toward a final stationary state that
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has the form of an X wave and that this feature is so strong that effectively
interpreting the dynamics in terms of X waves leads to a deep comprehen-
sion of the filamentation process.

In order to justify the assumption at the basis of the X wave model, in
Fig.1.10 we show the numerically simulated near field evolution of a 527
nm, 200 fs pump pulse undergoing filamentation in water. The intensity
profiles are plotted on a logarithmic scale with over a 6 decade range so as
to highlight the weaker X-features. Graphs (a) to (e) show the (r,t) evolu-
tion just after the nonlinear focus at distances of 3, 3.2, 3.4, 3.6 and 4 cm. As
can be seen pulse splitting has already set in and each split pulse starts to
develop weak but very clear X-shaped profiles. These graphs were obtained
accounting only for second order material dispersion. Accounting for the full
material dispersion and also plasma generation leads to a more complicated
(r,t) profile but the X-features are still present. An interesting feature of
filamentation is that, although the near fields may be rather difficult to in-
terpret it turns out that the full space-time Fourier transform (k ,w) shows
clear X wave features with well separated features (see fig.1.10(g)). This will
be very important for the ideas described in the following pages.

1.6.6 The Effective Three Wave Mixing model

The Effective Three Wave Mixing (ETWM) model was developed by Kolesik
et al. [32, 31, 33]: the idea is based on an interpretation of the nonlinear in-
teraction between the pump wave and the medium as a scattering process in
which the intense pump generates a perturbation in the material (a “mate-
rial” wave) that in turn scatters the pump pulse into the output pulse. This
model derives directly from the Unidirectional Optical Pulse Propagation
Equation (UPPE) [34] used by Kolesik et al. to simulate ultrashort pulse
propagation and filamentation. By describing the material perturbation Ay
as a sum of individual response peaks and writing these as a decomposi-
tion into Fourier components the UPPE leads to a relation for the scattered
amplitude [33]

iw?
Aou(2) = 57k X /dzZAx(z)Ain X

-1
exp [’LZ (—kz(w,km,ky) + k. (£2,u,v) + d ” )] . (1.34)

The most significant contribution to the output spectral components Agyt
will come from the processes for which the fast oscillating exponential term
~ 1. Approximating the input pulse with a plane monochromatic wave we
have the condition
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w — w
°l = 0. (1.35)

_kz(wa ks, ky) + kz(wm 0, O) +

Ur

This equation may be interpreted as a phase matching condition for the
process in which a material wave with frequency w — wg scatters an inci-
dent optical wave at wg to produce a scattered wave with frequency w and
transverse wave-numbers k. The shape of the output spectrum defined
by this relation depends on the linear chromatic dispersion parameters of
the material an on a single parameter v,., the group velocity of the material
response peak. It is interesting to note that this phase-matching relation is
formally identical to Eq.1.33, i.e. to the condition of dispersion-less propa-
gation used to describe stationary conical waves. Therefore the X wave and
the ETWM models have some similarities: they both show that filamenta-
tion in the normal group velocity dispersion regime is accompanied by a
spontaneous formation of X waves and the relations used to fit measured
and numerically calculated spectra are identical. However there are also
some differences: the ETWM model is derived through a rigorous derivation
starting from Maxwell’s equations that lead to the UPPE equations and fi-
nally to eq.1.35. Furthermore the output spectrum is described as the result
of a linear scattering process. The X wave model is based on the assumption
that due to the nonlinearity the input pulse will transform with a dynamics
that may be explained as the approach toward a stationary state. This is
not derived with a mathematical formulation but is rather postulated on the
basis of experimental and numerical observations. These two approaches are
somehow complementary but we would like to underline that the ETWM
model gives no prediction or physical explanation for the specific values ob-
served of the material group velocity. On the other hand the X wave model
was developed so as to give a tool useful for investigating the details of the
filamentation dynamics, such as pulse splitting and the group velocities of
the split pulses.

For an in-depth review of filamentation in all of its aspects we strongly sug-
gest reading Ref.[9]. The next chapters will go through the details of conical
waves, followed by a detailed description of the experimental methods used
to characterize polychromatic conical waves and finally the main results and
applications within the field of ultrashort laser pulse filamentation.
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Conical waves

Conical waves are a particular class of waves that owe their name to the
fact that the energy flux occurs along a conical surface. Their importance is
related to the fact that they represent stationary solutions to the wave prop-
agation equation, even in the presence of dispersion. The simplest example
of a conical wave is the monochromatic Bessel beam. We shall therefore start
our description from here and then extend the analysis to pulses, polychro-
matic, conical waves. We shall then conclude the chapter by studying the
role of nonlinearity.

2.1 Linear conical waves

In 1987 Durnin and co-workers gave the first experimental demonstration
that by properly shaping the spatial profile of an optical beam so as to re-
produce the Bessel function, it is possible to overcome the natural diffraction
of the central localized intensity peak [35]. This discovery was based on the
prediction that the Bessel profile is a diffractive-free (stationary) solution to
the wave equation (V? — ¢~ 20%/0t?)E = 0 that governs the propagation of
a monochromatic beam. Indeed if we look for a solution to this equation of
the form E(z,t) = A(r) exp(—j(k.;z — wt)), i.e. with an amplitude that does
not depend on the propagation distance z but only on the radial coordinate

r = /22 + y? we find

d?A  1dA

s (k* —kHA=0. (2.1)

This equation has the solution
A(r) = Jo(kpr) with k% = k2 4+ k2. (2.2)

Where Jy Writing &k, = ksin € and k, = k cos f and using the integral form
of the Bessel function we have
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Fig. 2.1. Spatial profiles of the (a) Bessel beam and (b) Bessel-Gauss beam.

E(Z, t) = Jo(kr sin Q)Gj(kZCos 6—wt)

2m
1 d¢6j(kz cos G—wt)ej(km sin 6 cos ¢+ky sin 6 sin ¢)

1 27

— j(gr—wt)
o/, doe , (2.3)

where the vector ¢ = k(Zsinf cos¢ + gsinfsin¢ + 2 cosf) intersects the
z-axis at an angle 6. The Bessel beam may therefore be viewed as formed by
infinite plane waves, all propagating at an angle with respect to the propa-
gation axis and arranged with their k-vectors along a conical surface. These
plane waves will overlap along the z-axis and the resulting interference pat-
tern will give rise to a Bessel-modulation of the transverse beam amplitude
(see Fig.2.1).
The phase velocity of the Bessel beam is vy = ¢/ cosf. We note that this
“superluminal” phase velocity is merely a geometrical effect due to the fact
that the plane waves are propagating at an angle with respect to the z axis.
Indeed the points of contact of the plane waves along the z axis are not
causally connected so there is no violation of Einstein causality.
Also note that the ideal non-diffracting wave of the form given in Eq.2.3
must have infinite energy. This is due to the fact that the energy calculated
as [|E[*dr o< [|Jo(ar)|?dr (o = ksinf) is not finite. Put in other words,
we note that each ring in the Bessel profile contains the same energy as the
central spot so an infinite number of rings will lead to an infinite energy.
In order to remove the divergence problem the Bessel-Gauss beam has been
introduced in accordance also to experimental possibilities [36]. The typical
experimental situation is that of an initial Gaussian beam that is reshaped
using linear optical elements, into a Bessel-Gauss beam (see Fig.2.1)
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E(z,r,t) = Jo(ar)e7r/%) . glitkz—wt)], (2.4)

The price to be paid for this apodization is the reappearance of diffraction.
The tighter the apodization (small o) the stronger the diffraction will be. It
is possible to give general relation between the non-diffractive ranges of the
Bessel-Gauss beam and the Gaussian beam [37]

Bessel-Gauss range ~ N - Gaussian range, (2.5)

where the Gaussian range, usually defined as the Rayleigh range, is Zp =
mw? /A where w is the beam diameter. The extended non-diffractive range
of the Bessel-Gauss comes at the expense of higher power request, that is
no longer infinite due to the apodization but is given by

Bessel-Gauss power ~ N - Gaussian power. (2.6)

The Bessel range may also be given as a function of the input beam diameter
and cone angle [38]:

o
tan @’

Bessel-Gauss range ~ (2.7)
So, generaly speaking, any beam has a “diffraction-free” distance. The ad-
vantage of the Bessel-Gauss beam is that in principle this distance may be
made as long as you wish.

2.1.1 Experimental methods for Bessel beams

Experimentally the Bessel-Gauss beam may be generated using holograms
or, more efficiently, using axicons (see Fig.2.2). Axicons are particular opti-
cal elements similar to lenses with the difference that the input glass surface
is flat and the output surface is cone-shaped. Such an optical element will
generate a Bessel beam that is apodized with the input beam profile (usually
Gaussian). Care must be taken in aligning the axicon with the input beam.
A simple trick may help in this case. The far-field pattern of the Bessel beam
is a ring: it is a sufficient to let the Bessel-Gauss beam propagate for a cer-
tain distance and this ring will become clearly visible. A correct alignment
of the axicon is obtained when the far-field ring is uniformly illuminated.
Finally care must be taken in assuring that the axicon is also orthogonal to
the input beam, for example by checking that the back-reflection from the
input surface of the axicon returns along the input beam path. Failure to do
this will lead to star-shaped patterns departing from the central peak that
may significantly perturb or alter experimental results.

An alternative to the axicon is the so-called lensacon ([39, 40, 41]): this is
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Fig. 2.2. Experimental setup for generating Bessel beams using an axicon.
The input Gaussian beam passes through the axicon and at the output we
find a Bessel beam, apodized by the input Gaussian profile. Looking at the
far-field, or sufficicntly far away from the axicon, we will observe a ring
pattern.

formed by a using a ring shaped aperture combined with a focusing lens.
In this way the aperture will block most of the beam with exception for
those plane waves propagating at a well defined angle with respect to the
propagation axis. This layout has the main disadvantage with respect to the
axicon that most of the input beam energy is lost (absorbed by the ring-
aperture) but has the advantage that it is made of standard and readily
available optical components and, most importantly, the Bessel beam angle
may be easily varied by simply changing the diameter of the ring aperture.
Finally, a common method used to generate Bessel beams is based on holo-
grams, basically circular grating patterns [42]. These may be easily generated
using a PC and printing the pattern on a transparency. Advantages and dis-
advantages with respect to the axicon are similar to those of the lensacon:
the holograms are easy and relatively cheap to generate but a lot of the
input beam energy is lost in the higher diffraction orders.

2.1.2 Pulsed Bessel Beams

So far we have considered only monochromatic continuous wave (CW) beams
but obviously the Bessel Beam generation techniques we have described may
be applied to laser pulses. The fluence pattern will not in general show a
marked variation with respect to the monochromatic case. However when
using pulses the central Bessel peak will now be a peak not only in space
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Fig. 2.3. Various configurations for the Bessel Beam: different pulse-front
tilt angles will lead to different group velocities, In general the group velocity
may be subluminal, superluminal or even negative.

but also in time and it is therefore important to know the velocity at which
this peak is traveling along the propagation direction.
We have already pointed out that the phase velocity is given by vy = w/k =
¢/ cosf. We define the group velocity v, of a Bessel pulse as vy = dw/dk
where k = kg cos 6. The group velocity of a Bessel pulse in vacuum is given
by [43]

c

Y97 Cos 0[1 — (wdb/dw) tan O]’ (28)

where the term wdf/0w is related to the pulse front tilt. The pulse front
is defined as the surface coinciding with the peak intensity and, due to
angular dispersion this may be tilted with respect to the phase front. A
common example of a tilted pulse front is that resulting from reflection of a
polychromatic pulse from a grating as shown in Fig.3.13. The angle between
the pulse and phase front, the tilt angle, J, is given by

tans — 22 2.9
ano = 87 ( . )
Therefore the group velocity may be written as
_ ccosd (2.10)
Y9 = cos(f +6) '

The sign in the denominator is determined by the sign of the angular disper-
sion. In other words, the angular pulse front tilt will strongly influence the
pulse group velocity which may be subluminal, superluminal or even nega-
tive [43, 44]. In turn, the pulse front tilt is determined by how we generate
the Bessel pulse. In particular, if we use a hologram and take the forward
transmitted zero-order peak the pulse front will remain parallel to the input
pulse front while the phase fronts will be bent at an angle 6 with respect
to the propagation axis. In other words the the angular dispersion is neg-
ative with the tilt angle is equal to the cone angle. As a result, the group
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velocity of the Bessel pulse is smaller than the speed of light (subluminal):
vg = ccos . On the other hand, for a refractive axicon with a wedge angle
~ and refractive index n the cone angle of the Bessel beam is determined
by Snell’s law, nsiny = sin(y + #), and the angular dispersion is given by
00/0w = (On/0w) sin~y/ cos(y + 0) [43]. If the material dispersion is normal
then the angular dispersion is positive and pulse front tilt results in a super-
luminal Bessel pulse, vy > ¢/ cos(f). Superluminal propagation of the Bessel
peak has been clearly demonstrated in two different experiments: in one, by
measuring the plasma trail induced by the pulse [45] and in the other by
an ingenious interference technique [46]. This last example is particularly
interesting: the Bessel pulse generated in this case is actually what is called
a Bessel-X pulse due to the fact that the spatio-temporal profile of the pulse
is X shaped. With long pulses this X shape is not apparent but was very
clear in the white-light experiment (with a roughly 10 fs coherence time).
Finally, if we take the positive sign in Eq.2.10 and § large enough, i.e. a very
large pulse front tilt, so that cosd > 0 but cos(d + J) < 0 then the group
velocity of the Bessel peak will be negative implying that we will observe
the peak forming at the leading edge of the overall temporal energy profile
and that this will shift toward the trailing edge as the overall pulse energy
propagates forward [47].

2.1.3 Polychromatic conical waves: X, O and “Fish” waves

At this point the interesting question is if the Bessel beam may be gener-
alized to the polychromatic case, i.e. to optical pulses, in such a way that
not only spatial spreading (diffraction) but also temporal spreading (disper-
sion) is eliminated. The quest for such a wave-packet, often referred to as
a “light-bullet”, has attracted much interest for a number reasons related
both to fundamental physics and to applications. The first and most popular
candidate for the light bullet was originally thought to be the 3-dimensional
optical soliton. The 3D soliton would result from the balance between non-
linear spatio-temporal nonlinear phase shift and diffraction and dispersion.
However, if realistic conditions are imposed in the numerical calculations,
accounting also for nonlinear losses, it turns out that there are no trivial
materials or conditions for which the soliton may actually form [48]. On
the other hand polychromatic conical waves, at the price of being weakly
localized, may indeed be stationary and counteract both diffraction and dis-
persion, and all this without requiring any particular nonlinear interaction.
Actually the first polychromatic conical waves were not discovered in optics
but in acoustics. Clearly the Durnin 1987 paper on Bessel beams does not
refer solely to light waves but to any kind of propagating waves. J. Lu, a
postdoc at the Mayo Clinic in Rochester, Minnesota recognized in Durnin’s
nonspreading Bessel beam the potential for extending the focal depth of ul-
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Fig. 2.4. X wave (6, \) relation and volume plot of the resulting X wave
calculated from Eq.2.11. The volume plot is cut in half so as to highlight
the internal intensity distribution.

trasound imaging [49]. Ultrasound images, like radar maps of approaching
aircraft, are formed by sweeping a pulsed beam through the region of inter-
est. Lu, together with Greenleaf, found a way to create short pulses from
the superposition of Bessel beams of different frequencies [50]. Because of
their distinctive profiles, Lu and Greenleaf named the pulses X waves (see
Fig.2.4).

The X wave may be obtained by writing the electric field as a linear super-
position of monochromatic Bessel beams

E(r, z,t) = /_00 S(w)Jo(kyr)explj(ksz — wt)]dw, (2.11)

where the transverse wave-number is k; = ksinf = w/csinf and is deter-
mined by the Bessel cone angle 6 and

ki = /k2(w) — k2. (2.12)

The longitudinal wave number k, = k cosf must be a linear function of w
in order for the pulse to be stationary, i.e. k, = w/v‘f. We find that the
longitudinal phase velocity vz = (w/k)(1/cosf) = ¢/ cos@ > ¢ and the lon-
gitudinal group velocity v? = v! > ¢ so the X wave has both phase and
group velocities that are superluminal.

In Fig.2.4 we show the X wave (6, \) relation and the relative X wave pro-
file!. The X-shaped profile is clearly visible in the volume plot that has been

! Note that the (6, \) space is analogous to the (k. ,w) space. However we
shall preferably refer to the former as this corresponds to the space in
which experiments are performed.
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cut in half so as to highlight the internal intensity distribution.

Lu and Greenleaf’s superposition scheme, works because the chromatic dis-
persion of ultrasound in water is negligible. That’s not the case for light
in most condensed media so that the optical pulse will actually spread in
time. In 1997, Sonajalg and co-workers of the University of Tartu in Estonia
figured out how to counter chromatic dispersion and create optical X wave
pulses that do not spread in time [51]. Their setup included a holographic
element, the “lensacon”, which distributes the frequency components of an
X-shaped pulse about different, adjustable cone angles. Indeed, dispersion
causes standard pulses to spread due to the different way in which phases
are accumulated at different frequencies. However we may take the trans-
verse wave number so that k| = (w/c)n(w)sinf(w): if the relation §(w) is
chosen correctly it may compensate the effect of the dispersion term n(w)
and the pulse will be stationary. In other words, in dispersive media the X
wave may remain stationary due to a mutual compensation of diffractive and
dispersive phase shifts. This condition may be expressed as a two parameter
function [52, 53]

k. (w) = k(w)cos = [k(wy) — B] + (k) — ) (w — wo), (2.13)

where « and [ are two arbitrary parameters, k{ = (dk/dw)|,, and wy =
2men(Ao) /Ao with Ag the central wavelength at which the relation is cal-
culated. The cone angles § may be chosen for each frequency so as to sat-
isfy this relation and the group velocity along the propagation z direction,
v! = (dk,/dw)~!, will be constant and all dispersive effects are removed.
The stationary polychromatic wave is often described as an “envelope X
wave”, i.e. rather than describing the full electric field F the field amplitude
A is given by

A(r, z,t) = /00 S(02)Jolk L (2)r] exp[j2t]dw, (2.14)

with 2 = w — wy. Equations 2.14 and2.13 are not limited to the description
of just X waves but describe a larger family of stationary conical wave-
packets.

It is possible to divide conical waves into three families on the basis of the
particular form of the k, (w) relation. This in turn depends solely on the
material dispersion relation k(w). We may see this by taking the Taylor
expansion of the wavevector k

/ 1 Vi 2 1 " 3
k(w) = k(wo) + kj(w — wo) + 5]{:0 (w—wp)* + gko (W—wp)”+--- (2.15)

with k) = dk/dw|.,, kj = d*k/dw?|,, and k' = d®k/dw?|,,. The relative
weight of each of these terms will determine the shape of the spectrum.
Three different cases may be described:
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Fig. 2.5. (0, \) spectra in three different dispersion regimes, normal, anoma-
lous and near to the zero-dispersion wavelength.

1. 1/6k} (w — wo)® < 1/2kf(w — wp)? and 1/2k}(w — wp)? > 0:
in this case the spectrum will be symmetric and will exhibit hyperbolic
X-like tails (X waves)

2. 1/6k} (w — wo)® < 1/2k5(w — wp)? and 1/2k{(w — wp)? < 0
in this case the spectrum will be symmetric and will exhibit an eliptical
shape (O waves)

3. 1/6k) (w — wo)® ~ 1/2k (w — wp)*:
independently of the sign of d2k/dw? the spectrum will be asymmetric
and will exhibit characteristics common to both X and O waves (Fish-
waves)

In Fig.2.5 we show examples of the three dispersion-relation families. The
graphs are calculated using the dispersion relation for water. Water has it’s
zero-dispersion wavelength at 1000 nm ([54]) so that at shorter wavelengths
we have normal dispersion and at longer wavelengths anomalous dispersion.
It is therefore possible to pass from one case (X, O or fish) to the other by
simply changing the central wavelength of the pulse. We therefore have a
clear one-to-one relation between the & (w) spectrum and the near-field in-
tensity profile of the conical wave. However it is important to realize that in
order to guarantee stationarity it is not necessary to actually excite the full
spectrum. This of course would even be impossible in the case of the X wave
that has an unbounded spectrum. So, in reality, even small sections of the
spectra shown in Fig.2.5 will still give stationary pulses and may be referred
to using the same terminology (X or O waves) introduced here. We shall
see later on that the most typical case encountered in experiments is that in
which only one of the two hyperbolical tails of the X wave is excited. This
“half” X wave is still stationary and all of the important physical properties
of the full X wave are still present. So for all practical purposes, such a pulse
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Fig. 2.6. Conical wave near-field profiles caculated for the cases of dominant
normal dispersion (X waves), anomalous dispersion (O waves) and near to
the zero-dispersion wavelength (fish waves). The graphs show the isocontour
of the full volume and a cut-out showing the wave-packet interior intensity
distribution.
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Fig. 2.7. Conical wave (k| ,w) curves calculated using Eq.2.12. Parameters
are wg = 2men(Ag) /Ao with A\g = 527 nm with n()) corresponding to water
([54]). Dashed lines are fora =0, f =0.Ina) a <0and 5 =0.Inb) a =0
and the two curves correspond to 3 > 0 and 3 < 0.

is still an X wave.

Wave-equation stationary solutions

In Eq.2.14 we constructed the conical wave stationary pulse as a superposi-
tion of non-diffracting Bessel beams, each at a different frequency and chosen
so that the angular distribution gives non-dispersive propagation (Eq.2.12).
It is also possible to derive a similar k) (w) relation starting directly from
the wave-equation. First lets simplify Eq.2.12. By Taylor expanding k(w),
performing the multiplications and keeping only terms up to second order
in 2 =(w—wp) we find

1
k= 2h)(ﬂ—%042+-2kW92>. (2.16)

This equation describes the dispersion relation of a polychromatic stationary
conical wave within the paraxial approximation and under the assumption
that only second order dispersion is relevant. This may also be obtained by
noting that under the paraxial approximation and up to second order in
dispersion, the propagation of narrowband pulses is ruled by the equation
for the amplitude A

oA j _, K192A

where z is the propagation direction, ¢t = ¢t — k{z is the local time and Vﬁ_ =
0?02 + 0%/0y?. Without going into too much detail here (see Ref.[55])
it can be shown that by substituting into the wave-equation Eq.2.17 the
general form of a solution whose envelope is assumed to be stationary in
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some reference frame, one finds a condition in the spectral domain that is
identical to Eq.2.16 and the stationary envelope A is precisely that given in
Eq.2.14.

Phase and group velocity

Let us now return to the &, (w) relation in Eq.2.13 and look a bit more
deeply at the meaning of the two parameters, o and 3. In Fig.2.7 we show the
conical wave spectral curves calculated for water around a central wavelength
Ao = 527 nm. The dispersion relation n(\) for water is taken from Eq.12
in Ref.[54] and shall be used extensively from hereon. This relation and the
measurements provided in Ref.[54] give k) = 4.5 fs/um, kj = 0.06 fs?/um
and k' = 0.007 fs?>/um near 500 nm. This implies that the third order
dispersion may be neglected (as long as the spectrum does not extend too
far) and the conical wave relation is that of an X wave. Fig.2.7(a) shows what
happens when we keep 3 = 0 and we vary «. In this case we took o < 0 and
we see how the X wave curve shifts to higher frequencies and a gap appears
between the two X-tails. As the absolute value of « increases so does the
gap between the two tails while one of these always passes through wg. This
situation describes very closely many typical experimental situations. We
may define a carrier frequency as

J wl(w)dw
[I(w)dw

= (2.18)

The phase and group velocities of the conical wave are then defined through
the relations [55, 56]

v) = ;, (2.19)
k' (wo) — «
’U(z) = 76} . .
@) -5 (220

Therefore, by tuning the values of the free parameters a and g we have the
possibility to tune the phase and group velocity of the conical wave.

Let us know look briefly at the effect of the 3 parameter. Fig.2.7(b) shows
the X wave curves for « = 0 and 8 > 0 and 8 < 0. Both curves are centered
at wp so that their group velocity is not varied with respect to a standard
Gaussian pulse centered at the same frequency but the phase velocity is ei-
ther subluminal (3 < 0) or superluminal (8 > 0).

We underline once more the fact that conical waves may have either sub-
luminal or even superluminal propagation velocities. We have seen that in
the case of the electric-field X wave introduced by Lu and Greenleaf, the
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phase and group velocities are equal to each other and always greater than
c. However, the group and phase velocities in question refer only to the lon-
gitudinal components of the velocity, i.e. along the propagation direction.
As we have already pointed out, even a plane wave propagating with a ve-
locity v but at an angle 6 with z will have v, = v/cosf and, depending
on the angle, this may be made larger than c. So this example too may
seem to violate causality but, simply, it does not due to the fact that the
causality relation does not apply strictly to (some component of) the group
velocity but rather to the signal, or information, velocity. So the problem
actually lies in the physical meaning that is often erroneously attributed to
the group velocity, as originally pointed out by L. Brilloiun some years ago
[57]. The group velocity, as weird as it may seem, can be greater than c,
infinite or even negative while still retaining its meaning as the velocity of
nearly undistorted pulse propagation (see also Ref.[58]).

Measuring the group velocity

Many of the results and diagnostic tools described here are based on pulse
characterization in the Fourier (k) ,w) space. One of the many unique fea-
tures offered by this approach is that measurements performed in this do-
main allow direct access to the value of the group velocity of the conical wave
packet (or in general of any pulse). Let us consider for example a situation
in which we observe the spontaneous formation of a stationary wave-packet
in normal dispersion, i.e. an X wave, and we want to determine its group
velocity. We start from the measured & (w) values: from these we may de-
rive k. = y/k(w)? — k% (w) (using the material dispersion relation for k(w)).
If we find a linear relation between k, and w then we may conclude that
the spectrum is that of a stationary, or more precisely, non-dispersive wave-
packet (see Eq.2.13). By taking the first derivative with respect to w of this
linear relation we recover the group velocity.

This method is very general, may be applied to a variety of cases (e.g. pulses
of any shape and not necessarily conical waves) and is particularly indicated
for situations in which we do not have the luxury of a fully formed X wave
spectrum, so for example only one X-tail (or part of this) is excited.

2.2 Nonlinear conical waves

The discovery of a stationary state in a given physical system is never trivial
and is of interest due not only to its fundamental implications but also due
to possible, real-world applications. Conical waves are no exception in this
sense. Yet, these particular wave-packets have an extra feature that renders
them even more interesting: they are stationary not only in the linear but
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also in the nonlinear regime. This is quite a unique property, i.e. they may
be seen as a continuous family of wave-packets parametrized by the inten-
sity (i.e. going from the linear to the nonlinear regime), whereas for example
solitons (which are intrinsically nonlinear structures) exist only as discrete
solutions to the propagation equation (their parameters such as peak inten-
sity must satisfy specific relations). So the soliton has no linear analogue.
Furthermore serious problems arise when we try to generalize the soliton
concept to three dimensional systems. In real-world materials the same non-
linearities that allow balancing diffraction and dispersion will also kill the
pulse. Indeed there is always an imaginary, absorbing, term associated to
the real, self-focusing, nonlinearity and the intensities required to excite the
full 3D soliton will lead to such high nonlinear absorption losses that there
is no hope to actually observe its formation ([48]). Nonlinear conical waves,
on the contrary, display remarkable features: they are stationary in both the
linear and the nonlinear regime and their propagation, rather than hindered,
may even be promoted and sustained by nonlinear losses.

2.2.1 Kerr nonlinearity and stationarity:
the nonlinear X wave

The wave-equation Eq.2.17 is very similar to the nonlinear Schrodinger equa-
tion that we was derived in Chapter 1,

oA  j _, kyO?PA K )

Indeed the two equations differ only due to the presence of the nonlinear
term. In 2003 Conti et al. showed that the NLSE in normal dispersion has
a stationary solution in the form of an X wave [59], the “nonlinear X wave”
(NLXW). This finding in itself is important as it marks a distinct difference
with respect to solitons. The extension of the concept of the soliton to the 3D
realm was proposed in the nineties by Silberberg (the optical light bullet)
[60] but this requires anomalous dispersion, large intensities and neglects
the occurrence of losses. This is a serious limitation in many situations due
to the fact that most materials exhibit normal dispersion in the wavelength
regions (500-1000 nm) at which high power lasers are available. This has
hindered somewhat a widespread application of soliton technology. Even in
the case of optical fibers for which high power lasers at 1500 nm are now
available and the coefficients of glass have been carefully measured, soliton
transmission systems have still not made the expected technological impact.
Conti also highlights a fundamental difference between the linear and non-
linear regimes: “NLXWs can be generated spontaneously at high intensity
from conventional bell-shaped (in space and time) input beams through self-
induced spectral reshaping triggered by conical emission.”
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This indeed is the first link that we have with laser pulse filamentation. In
chapter 1 we saw that one of the main features of filamentation is coni-
cal emission, a spectral broadening that appears with different frequencies
emitted at different angles. If these angles are such that the longitudinal
component of the wavevector varies linearly with frequency then the pulse
will be non-dispersive (Eq.2.13).

Conti actually performed his analysis not only for Kerr media but also for
materials with a second order (X(2)) nonlinearity finding the same results.
Indeed the first verification of the spontaneous transformation from an in-
put Gaussian pulse into a stationary X wave was obtained in a Lithium-
Troborate (LBO) x(? crystal [29]. So the existence and spontaneous forma-
tion of X wave states appears as a very general phenomenum and does not
depend crucially on the type of nonlinearity involved. Conti et al. have even
shown that the same physics may be extended to apparently completely
different systems such as Bose-Einstein condensates [61].

2.2.2 Nonlinear losses and stationarity:
the Unbalanced-Bessel beam

So far we have described the NLSE and noted that it has X-shaped sta-
tionary solution. However nonlinear losses, the number-one enemy of multi-
dimensional optical solitons, were not included in this analysis. One of the
most surprising features of nonlinear conical waves is that there is a class of
such waves whose stationarity is sustained by a continuous refilling of the
nonlinearly absorbed central spot with the energy supplied by the linear,
conical tails [62].

This was shown starting from the so-called 2D+1 NLSE ? with an extra
term added that accounts for nonlinear losses [62] :

— = ViA+ —no|APA - ——|APPK 24 2.22
where S is the nonlinear absorption coefficient and K = 2,3, - - - indicates

the number photons involved in this multiphoton process. The stationary
solution to this equation may be found numerically but this solution also
has an analytical formula that describes its asymptotic shape, i.e. far from
the central peak:

2 The “2D+1” term indicates that we are studying the evolution of a
monochromatic beam so that the temporal envelope of the pulse is not
considered. In other words, only the transverse (x,y) profile (thus “2D”) is
studied during propagation along the z direction (thus “41”). In contrast
the NLSE shown in Eq.2.21 accounts also for a non-uniform profile and
may be indicated as the “3D+1 NLSE”
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normalized |

Fig. 2.8. Experimentally measured transformation of a linear Bessel beam
(dotted green line) into a nonlinear UBB with increasing input energy, from
600 pJ (from red dashed line) to 1400 uJ (blue solid line). The Bessel beam
transforms by shrinking in diameter and in reducing the contrast of the
external oscillations.

A %amﬂg”( 2kor) + i H D (V2kor))e % (2.23)
A is formed by two nondiffracting Hankel beams of the first and second kind,
with the same cone angle 6§ = /2§ /k, but different weights, a,y: and ayy,.
It is important to recall at this point the zero-order Bessel function may be
written as a sum of a Hankel functions of the first and second order, as shown
in Eq.2.23, with equal weights a,u = a4, (and § = 0) and that Hél)(ﬁ)
represents an outgoing wave propagating with an angle # and originating
from a source located at the Bessel peak while H(SQ)(G) is an incoming wave
at an angle 6 and disappearing in a sink in the same position of the source for
HéQ) . The oscillations in the Bessel function may therefore be viewed as the
interference between the incoming Hankel and the outgoing Hankel fields.
So the meaning of Eq.2.23 is now clearer: by creating an unbalance between
the two Hankel fields, e.g. ai,, > apyt, we will have an incoming flux of power
that may balance out losses that occur due to nonlinear absorption in the
central peak. Clearly true stationarity, i.e. over an infinite distance, requires
an infinite amount of energy in the unbalanced beam (UBB). The same
argument applies also for a the standard balanced beam and the solution is
the same in both cases and we have already noted that practical applications
do not require stationarity in this strict sense but only over a certain distance
so that the total required energy will be finite. Finally the parameter § in
Eq.2.23 accounts for the presence of the Kerr term in Eq.2.22 that will lead
to an additional phase shift in the Hankel fields with respect to the linear
case. So overall, if we compare the Bessel beam with the nonlinear-UBB we
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should expect to note a reduced visibility of the radial oscillations due to
the unbalancing of the incoming and outgoing waves and a compression of
the rings and central peak due to the Kerr-induced phase-shift.

Fig.2.8 shows the experimentally measured transformation of a linear Bessel
beam in presence of Kerr nonlinearity and nonlinear losses. The idea of
the experiment was to try to excite the nonlinear UBB by starting from a
beam profile as close as possible to the final state. The Bessel beam was
therefore our obvious choice. We generated the Bessel beam starting from
a Gaussian beam (527 nm central wavelength, 200 fs temporal duration)
that was sent through an axicon (vertex angle = 175 deg). The Bessel beam
was then passed through a 4 cm long cuvette filled with water. If the input
energy is high enough then the Kerr nonlinearity and nonlinear losses will be
excited. As can be seen in Fig.2.8 the input Bessel beam (dotted green line)
undergoes a strong transformation with increasing input energy, from 600 wJ
(from red dashed line) to 1400 uJ (blue solid line). Clearly the rings shrink
in diameter (this is most clearly seen looking at the position of the first
minimum along the r-axis) and lose contrast with an effect that increases
with increasing energy. It therefore appears that indeed the strong nonlinear
losses are inducing the balanced Bessel beam to unbalance the incoming and
outgoing energy flows so as to counteract the energy losses that are occurring
at the central, high intensity peak.

2.2.3 Nonlinear conical waves and filamentation

We have already pointed out the tight connection that exists between spon-
taneous evolution of an ultrashort Gaussian pulse in the presence of an opti-
cal nonlinearity and X waves. The NLS equation used to study the problem,
Eq.2.21 is somewhat simpler that the equation that is frequently used to
simulate numerically ultrashort laser pulse filamentation, Eq.1.31. This is
due to the fact that the extremely high intensities reached during the fila-
mentation process lead to a number of nonlinear processes such as plasma
generation, nonlinear losses, Stimulated Raman Scattering that must be ac-
counted for.

The connection between filamentation and conical waves was proposed for
the first time in 2004 in two independent works by Dubietis and Kolesik. Du-
bities carried out a series of experiments in water ([63, 12]) showing that the
filament propagates without any self-channeling mechanism [12], in contrast
with the more popular model for filamentation in air [11]. Quoting Dubi-
etis’” own words: “the propagation of intense 200 fs pulses in water reveals
light filaments not sustained by static balance between Kerr-induced self-
focusing and plasma-induced defocusing. Numerical calculations outline the
occurrence of a possible scenario where filaments appear because of sponta-
neous reshaping of the Gaussian input beam into a conical wave, driven by
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Fig. 2.9. Experimentally measured transformation of an input Gaussian
transverse profile (full spatial profiles to the left, a single section along the
beam center to the right). The input profile (z = 0 mm) is roughly Gaussian
in shape but quickly transforms under the action of nonlinear losses (z = 5
mm) and exhibits a flat top. This flat top will then lead to the formation of
rings (already visible in the z = 5 mm measurement). These rings will then
focus down and form the filament (z = 25 mm).
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the requirement of maximum localization, maximum stationarity, and min-
imum nonlinear losses”. The experiment with which this was demonstrated
is conceptually simple but extremely effective. In order to verify the guiding
mechanism a filament was formed in water from an input Gaussian pulse
focused to around 100 pm at ther input facet of the water cuvette. For input
energies in the 2-5 pJ range the nonlinear focus will be situated roughly at
about 1-2 cm from the input facet and a filament will thus form3. At this
point Dubietis placed first a 55 um pin-hole in the path of the filament so
that only the central spike of the filament passes through. This, somewhat
unexpectedely, caused the sudden death of the filament and the transmitted
peak suffered strong diffraction. On the other hand, when a stopper was
placed in the path of the filament so that all of the beam passed except for
the central intense spike (recall that the central spike is surrounded by a
much larger, low-intensity background) then the spike reformed nearly im-
mediately and further propagation was practically identical to that of the
unperturbed filament. This striking finding was explained by suggesting that
the filament propagates in the form a conical wave so that energy is continu-
ously flowing from the surrounding energy reservoir toward the central spike.
As soon as the spike is removed the refilling mechanism will recreate it. If the
reservoir is removed, then the central spike shall also disappear. In the same
work the experiments were reproduced with a numerical model similar to
Eq.1.31 in which all effects related to plasma generation were neglected and
Kerr nonlinearity and nonlinear losses were the dominant nonlinear terms.
It therefore appears that the conical wave, i.e. a central intense spike sur-
rounded by a large background of light moving at an angle with respect to
the propagation axis, may spontaneously appear starting from a Gaussian
pulse, in the presence of strong, localized nonlinear losses. In order to see
how this occurs let us first consider the effect of nonlinear losses on an in-
tense Gaussian pulse.

Nonlinear losses will affect primarily the more intense parts of pulse, i.e. the
higher the intensity the larger the losses will be. This will lead to a beam
flattening due to the losses that cut away the more intense parts of the pulse.
This flat-top structure will then, under the action of the Kerr nonlinearity,
lead to self-focusing in the form of a ring [64]. A similar dynamics has been
reported for super-Gaussian input beams that are also flat-top. The intense
ring-shaped modulation will then further shrink and result in a very intense
spike in the center of the beam, still surrounded by ring-shaped structures.
Consequently, the formation of filaments can be interpreted as due to the

3 Note that these working conditions, input Gaussian profile, 200 fs pulse
duration (FWHM), 100 pm diameter (FWHM), 527 nm central wave-
length, input energies 1-6 pJ are the same as those used in most of the
experiments described in these pages
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on-axis sink i.e. nonlinear losses leading to an inward energy flow from the
surrounding reservoir. The evolution described here is shown in the experi-
mental measurements of Fig.2.9. The beam transverse profile is measured at
three different propagation distances for a filament forming in water. At z
= 0 mm we see the (nearly) Gaussian input. At z = 5 mm we clearly see the
effect of the nonlinear losses that have flattened the beam top and the Kerr
nonlinearity has already induced an initial weak ring-shape. This will then
self-focus and form the filament, shown at the output of the water sample
(z = 25 mm).

Kolesik et al. gave the first clear description of filamentation in terms of
spontaneously formed X waves [31]. In their simulations pulse splitting after
the nonlinear focus is induced by group-velocity dispersion and each split
pump pulse will lead to the formation of an X wave. Further propagation
is characterized by the dynamical interaction of these X waves which may
create a flux of energy toward the temporal slices between the two pulses
and the subsequent reformation of a strong central peak. This may then in
turn split once more and explain the cyclical dynamical replenishment of the
central intensity peak. In other words, although the filamentation process
is descibed on the basis stationary amplitude X wave profiles, the interac-
tion and propagation of these under a common envelope actually leads to a
highly dynamical process that keeps on “boiling” until it dies out.

So, summarizing, filament propagation in condensed media may be explained
as the dynamical interaction and propagation of conical wave-packets that
are spontaneously formed in the presence of strong nonlinear losses. Al-
though this picture is somewhat different from the generally accepted model
for filamentation in gases, the same mechanisms at play in condensed media
are also present in air. Furthermore other effects, associated for example
to plasma generation, may also give similar effects to those of nonlinear
losses and in any case we should recall that the nonlinear X wave has been
shown to be a stationary state to the NLSE (pure Kerr nonlinearity) [59].
It is therefore reasonable to expect to find evidence of spontaneous conical
wave formation in all filaments, irrespectively of the media in which they
are formed.
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Ultrashort laser pulse diagnostics

The measurement and characterization of ultrashort optical pulses is an ex-
tremely important area of laser research. The whole idea of using ultrashort
pulses is related to the fact that we are always trying to push our knowledge
to the limits and we are interested in measuring ever shorter events of phys-
ical processes. But what is the point of all this if we aren’t able to measure
the pulses? This issue is not as trivial as it may seem. In order to measure
some ultrashort event, such as a femtosecond laser pulse, we will need some-
thing that is even shorter. This can obviously be somewhat troublesome if
the laser pulse is the shortest object that we have in the lab. The best we can
do is try to measure the pulse using the pulse itself as a reference: starting
from this idea the autocorrelation, cross-correlation and similar techniques,
such as the frequency resolved optical gating (FROG) were invented. These
are treated in great detail in Rick Trebino’s book ([65]), the inventor of the
FROG technique, and the reader should refer to this for more information.
Here we will give an overview of some measurement techniques that rely
on an extension of the standard cross-correlation measurement or on indi-
rect detection of the pulse phase always following the mainstream idea that
we are interested in a full 3D characterization. It would of course by much
better if we could detect the three dimensional pulse phases directly. This
is indeed possible although the measurements are usually somewhat more
complicated than those shown here or, alternatively, require the use of non-
obvious phase retrieval algorithms. Work is still proceeding in this complex
and fascinating area and recently single shot, full 3D phase recovery mea-
surement techniques have been proposed [66]. However retrieving the full 3D
phase profile of very complex pulses appears to be much more difficult than
retrieving the phase profile at just one single radial position of the pulse. So
whilst FROG and similar techniques should be seriously considered if you
want 1D phase information, we will try to propose alternative measurements
that may give us the needed information in full 3D space without necessarily
resorting to the full phase pattern.
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3.1 Correlation techniques

Let us assume that we wish to characterize the temporal profile of a very
short optical pulse. As we have pointed out this pulse will most probably be
the shortest object in our lab and, if the pulse duration is in the picosecond
or femtosecond range, there is no hope to measure it using for example a
photodiode as the diode response and electronics cannot follow such fast
intensity variations.

A widely used technique for 1D temporal characterization is the autocorrela-
tion. The most common implementation of this is based on second-harmonic
generation in a crystal that has (2 #£ 0 (see Eq.1.1). If we split the pulse
under measurement in two, using for example a beam splitter, we may then
recombine the two pulses in the crystal. If the two beams arrive at the crystal
with slightly different angles then the crystal will produce a non-collinear
signal at the second-harmonic (SH) frequency that will be emitted at an
angle roughly half-way between the two input beams. The noncollinear SH
will have an intensity (measured by a photodiode) given by

Tsp(7) o / T I — ), (3.1)
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where 7 is the relative temporal delay between the two pulses. Therefore
the SH signal is given by the correlation function, or self-convolution, of
the pulse. So now we may retrieve the pulse temporal shape by finding the
I(t) profile whose correlation function is equal to the measured SH trace.
Altough this seems very simple the method actually hides a number of traps,
some serious, others a bit less, but they should nevertheless not be forgotten
[65]. From an experimental point of view we must take care that a certain
number of constraints are satisfied:

e the pulse widths wqg at the crystal must be much smaller than the pulse
duration c- tg. The risk of not respecting this limitation is that the mea-
sured autocorrelation trace will be lengthened due to a continued overlap
of the two pulses along the pulse spatial wings. In order to avoid this we
should also try to keep the angle between the two beams as small as
possible (see Fig.3.1.)

e the SH conversion has a limited bandwidth due to the fact that each fre-
quency will be perfectly phase-matched for a slightly different orientation
of the crystal. If the bandwidth is very large not all of these components
will be converted resulting in a modified (longer) autocorrelation trace.
The temporal interpretation of this effect is based on the pulse and SH
different group-velocities. In a long crystal the two pulses will separate
more in time with respect to a shorter crystal. In other words this prob-
lem may be avoided by using shorter crystals.
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»
autocorrelation delay autocorrelation delay

Fig. 3.1. Schematic picture of the autocorrelation obtained in the two cases
wo >> 7 and wy << 7. The former will lead to overestimation of the pulse
duration due to the large beam width. The latter will give the correct value
for the pulse duration 7. The “autocorrelation delay” indicates the relative
delay (between the two pulses) region for which a noncollinear SH signal
will be measured at the crystal output.

A correct autocorrelation trace will always be symmetric and will give a
direct indication of the pulse temporal structure of the pulse at some trans-
verse coordinate, usually the pulse center at » = 0. However it is important
to note that the best an autocorrelation can give is just an indication of the
pulse structure and sometimes even the “indication” may be wrong. Trebino
[65] lists a number of cases and shortcomings of the autocorrelation method,
in particular a series of cases in which quite different pulses will give identi-
cal, or in any case experimentally indistinguishable, autocorrelation traces.
So, for example, an autocorrelation trace may indicate how many peaks or
pulses are present as long as the structure is not complicated and may be
assumed as a combination of Gaussian (or similar) pulses. So some kind of
guess is needed for the pulse shapes. Similarly we may have a simple pulse
without any relevant structure (e.g. multiple peaks) and want to determine
the pulse temporal duration. The root-mean-square (rms) width of a con-
volution c(t) = f(t) * g(t) is given by 72, . = Tfms_f + Tns—g S0 that in
the case of our self-convolution the autocorrelation trace rms width is /2
time the pulse intensity rms width'. This is very useful if we want the rms
pulse width but usually we want the Full-Width-Half-Maximum (FWHM)
or something similar. But in order to obtain such information we must once
more make guess regarding the pulse shape. For example a Gaussian pulse
will give an intensity autocorrelation trace that is v/2 times wider, a sech(t)?

! The pulse rms width is defined as 72,, = (t2) — (t)?> where (t") =
[t I(t)de.
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Fig. 3.2. Experimental layout for three-dimensional imaging of ultrashort
laser pulses.

gives an autocorrelation that is 1.54 times wider and so on.

So the main message is that autocorrelation trace results should be treated
carefully. Trebino gives an excellent review of what can and what cannot
be said using autocorrelation traces and we won’t go any further in this
direction. However the main limitation we want to overcome is the reduced
information due to the lack of any spatial resolution in standard autocorre-
lation traces. For example the autocorrelation method outlined above will
not tell us if the pulse is characterized by a spatiotemporal coupling, i.e.
if the pulse temporal profile depends on the transverse spatial coordinate.
Of course we may repeat the autocorrelation, each time selecting a different
portion of the pulse and then trying to recombine the data to obtain some
kind of r,t map. But there is a more efficient way of doing this.

Three dimensional intensity mapping

The idea of the three dimensional (3D) intensity mapping technique is that
by using a “gate” pulse that is much shorter than the pulse we want to
characterize, we may perform a cross-correlation and, by keeping all the
information also in the transverse spatial direction, we may reconstruct the
full 3D (7, t) intensity profile. The idea is very simple: a very short gate pulse
acts as a knife selecting single portions of the pulse at each delay so that, for
a fixed delay, only the section of the pulse that is overlapped with the gate
will be converted in frequency at the nonlinear crystal. By keeping the gate
pulse very wide (with respect to the pulse we are characterizing) so that in
the transverse spatial direction we may take it as practically constant, the
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Fig. 3.3. Three dimensional intensity map of (a) a Bessel-Gauss pulse.
and (b) of a spontaneously generated X wave in a crystal with second order
nonlinearity (from Ref.[29]).

second harmonic or sum frequency signal generated by the nonlinear crystal
will reproduce the pulse transverse intensity distribution. Ideally we would
like our gate pulse to have a perfectly uniform spatial distribution and an
infinitely short duration so that the sum-frequency signal will be

+oo
SF(I’,y, T) OC/ F(x,y,t)G(a;,y,t - T)dt

—00

+oo
= / F(x,y,t)0(t — 7)dt

—00

= F(z,y,T) (3.2)

where F(x,y,t) is the three-dimensional laser pulse we want to characterize
and G(z,y,t) is the gate pulse. So the shorter the temporal duration of G
and the more uniform it is along the transverse direction, the more precise
the three-dimensional reconstruction will be.

From a practical point of view it is not always obvious that we will have
access to pulses in our lab that are shorter than the ones we want to char-
acterize. Usually the shortest pulse are those used in the experiments them-
selves. But this is not always the case. Is is possible to resort to pulse com-
pression techniques for the gate pulse [67, 68], while some companies (e.g.
Light Conversion Ltd., Vilnius, Lithuania) provide optical parametric am-
plifiers that give access to 10-20 fs pulses. The basic principle of operation of
this Noncollinear Optical Parametric Amplifier (NOPA) relies on parametric
amplification of chirped signal produced by supercontinuum generation in a
transparent medium possessing third order nonlinearity. The non-collinear
geometry is used due to the broad amplification bandwidth in the visible
spectral range and, when pumped with a 100 fs Ti:Sapph laser pulse it will
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Fig. 3.4. 3D intensity map of a filamented laser pulse. The filament was
induced with a 100 fs, 3.3 uJ laser pulse, focused to a 100 yum FWHM at
the entrance of a 3 cm long water cell. The left-hand graph shows the full
iso-surface plot at a level equal to 0.14 time the maximum intensity. The
right-hand plot is the same but with a cut-through so as to highlight the
internal intensity distribution.

give pulses with much lower energy with respect to the pump but with du-
rations in the 10-20 fs range. So we may use part of the 100 fs pump pulse
energy to perform our experiments and then use the 20 fs NOPA pulse to
perform a 3D mapping of our pulse at the experiment output. Another op-
tion is to split our laser pulse into two before the experiment. One copy of
the pulse will be used as the gate pulse while the other is stretched to a
longer duration (e.g. by using a pair of gratings or, if the original pulse is
short enough, by propagation in a dispersive medium such as glass). This
stretched pulse may then be used for the experiment and later characterized
using the shorter gate pulse.

As an example of the 3D mapping technique, in Fig.3.3(a) we show the 3D
map of Bessel-Gauss pulse generated by an axicone. The figure shows an
iso-surface volume map in which the radial oscillations are clearly visible.
We may use the technique to measure more complicated pulses. The first
experimental demonstration of the spontaneous formation of X waves was
performed with this technique and allowed a direct visualization of the com-
plicated bi-conical structure of the full three-dimensional X wave [29]. The
X wave in question was generated in a crystal with a second order nonlin-
earity (Lithium Triborate, LBO) and the resulting X wave was particularly
evident as shown in Fig.3.3(b). However, although spontaneous formation of
X waves has been predicted also in Kerr media [59], in this case the resulting
three-dimensional patterns are much more difficult to interpret. This is due
to the fact that up to date the only regime in which the X waves appear
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Fig. 3.5. Evolution of (6, \) spectrum of an 800 nm, 100 fs, laser pulse un-
dergoing filamentation in the same conditions of Fig.3.4. (a) input spectrum,
(b) after 1 cm propagation, (c) 2 cm propagation and (d) 3 cm propagation.

spontaneously in Kerr media is that of of ultrashort laser pulse filamenta-
tion. However filamentation will also lead to pulse splitting. We shall see
that the whole pulse splitting process may actually be interpreted in terms
of the spontaneous formation of X waves, so each split pulse is actually an X
wave. This is also why filament 3D maps have proved difficult to interpret:
the X-tails from each split pulse will overlap, create complicated interference
patterns [69].

In Fig.3.4 we show a 3D map of an 800 nm, 100 fs, laser pulse that has
undergone filamentation in 3 cm of water [69]. Although strong ring-shaped
features are evident and give us an indication of the conical nature of the
pulses, any actual X-shapes are actually quite difficult to see. Note the multi-
ple peak structure, highlighted in the cut-out (right-hand graph), with each
peak interfering with it’s neighbors. Repeating the experiment numerically
allows us to follow the evolution of the input Gaussian pulse with great
detail. Such results from a numerical simulation are shown in Fig.1.10: the
input Gaussian pulse splits in two and around each daughter pulse weak
but clearly visible X-features develop. However the visibility of these fea-
tures is clear in this simulation because we have the possibility to plot the
data over a very large intensity range (in this case 6 decades). The best
CCD cameras currently available will give the experimentalist at the most
a 16 bit dynamic range, so only slightly more that four decades. The possi-
bility to reveal low-intensity structures may be further reduced due to the
sum-frequency process used for example in the 3D mapping measurement.
So overall this implies that experimentally in some cases we may only ob-
serve the complicated central interference pattern in Fig.1.10 and completely
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Fig. 3.6. Experimental setup used for measuring the Fourier (6, \) spec-
trum.

miss the weaker X-features. For this reason it is often convenient to resort
to another measurement technique based on the measurement of the spec-
tral far-field pattern (k,w) (or, for the experimentalist (0, A)). Indeed these
spectra are also X-shaped but now the X-features are much clearer and well-
defined. So much so that measurements in (6, \) are particularly effective in
revealing the presence and the specific features of X (or in general conical)
waves. For example in Fig.3.5 we show the measured (0, \) spectrum evo-
lution of corresponding the laser pulse in Fig.3.4 [69]. The spectrum shows
clear off-axis radiation associated to the X wave that is well-separated from
the on-axis part. As we shall see this allows a precise characterization of
the X wave even in conditions in which the near-field may be extremely
complicated.

3.2 Spectral techniques

The importance of the information contained in the Fourier spectrum (k, , w)
was first pointed pointed out in experimental measurements of filaments in
condensed media [70], but the same technique has also been adopted for the
interpretation of numerical simulations and examined with a certain detail
by Kolesik et al. [33]. The first far-field measurements bearing clear evidence
of X wave formation are reported in Ref.[71] although the conical part of the
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Fig. 3.7. “Short-cut” version of an experimental setup for measuring (6, \)
spectra. The input beam is sent through a slit and then into a dispersive
glass prism. The output is then passed through a lens. These three optical
elements should be kept as close as possible. At a distance f from the lens
one will have the (6, \) spectrum although the image may be blurred (due to
diffraction from the slit) and the \-axis needs to be carefully calibrated (e.g.
using a fiber-coupled spectrometer) as the variation of A along the horizontal
axis is not linear and will depend on the specific prism used. In some cases
it may be necessary to reduce the input pulse energy (e.g. if performing
experiments with mJ pulses). This is done by taking the reflections from
one or two wedged glass plates placed before the setup.

spectrum is not explicitly treated. Even earlier measurements of possible X
wave patterns are shown in the second chapter of Alfano’s book ([72]). Here
the data were not meant to reproduce the full (k;,w) spectrum and only
part of the conical features are visible.

Here we show how to go about measuring and understanding in the Fourier
domain the spatiotemporal characteristics of complex ultrashort laser pulse
filaments.

The measurement apparatus in itself is quite simple and is drawn in Fig.3.6.
Assuming that we have a laser pulse generated by some kind of experiment,
we may place a lens of focal length f at the output making sure to collect
all of the light associated to the laser pulse (in particular the usually weak
components that are propagating at large angles with respect to the propa-
gation direction). At a distance f after the lens we have the so-called Fourier
plane in which we find the spatial Fourier transform of our laser pulse, i.e.
the pulse transverse (z,y) time-integrated intensity (fluence) distribution is
transformed into it’s transverse Fourier transform in (6,,6,) coordinates.
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The idea is to now place the vertical input slit of an imaging spectrometer
in the Fourier plane of the lens. The imaging spectrometer will reproduce
the vertical spatial distribution (i.e. the 6, distribution) at the instrument
output (imaging) plane. In the horizontal direction the pulse will be Fourier
transformed in the temporal domain. Therefore at the output plane of the
spectrometer the horizontal axis will show the spectral distribution (in wave-
length \) while the vertical axis will correspond to the spatial Fourier trans-
form (in angles #). We may then place some kind of instrument that can
record the full two-dimensional pattern such as film-based camera or a digi-
tal CCD camera. The wavelength scale may be easily calibrated by changing
the central wavelength by A\ in the spectrometer and registering the num-
ber N of pixels on the CCD by which the central laser wavelength is shifted.
In other words we determine the calibration factor C, = AX/N nm/pixel.
We may calibrate the vertical axis by using the relation Cy = AY/f rads,
where AY is the vertical size of the single CCD pixel?.

Although the setup is very simple, some care should be taken in choosing
and placing the “far-field” lens. It is important to try to avoid having an
imaging plane that is too close to the far-field plane. For example we may
have the output facet of our Kerr sample placed at 15 ¢m from the input
of the lens. If we choose a focal length f = 5 c¢m then we will have the
imaging plane located at a distance d = 6.3 cm which is rather close the
far-field plane (located at a distance f = 5 cm). Such a situation may lead
to some confusion between the (r, A) and the (0, A) spectra. This may easily
be avoided by choosing a lens with f = 15 ¢m so that d = 37.5 cm and
the imaging and Fourier planes will be well-separated. However we do have
another constraint and that is the size of the sensor (typically a CCD cam-
era). Increasing f will lead to an increase in the vertical dimension of the
spectrum Dy = f -0 and this may no longer fit into the sensitive region of
the sensor. So a compromise must be found between the two requirements of
a well resolved spectrum and the size of the CCD chip. Finally, it is also rec-
ommendable to use an achromat, i.e. a lens composed of more than one kind
of glass so as to reduce chromatic aberrations and in any case to check the
lens focal length at the laser central wavelength. Usually the lens is assigned
a nominal focal length measured for example with He-Ne laser at 632 nm
and large differences may be found at your actual working wavelength. As
a last comment we note that although imaging spectrometers are already
present in many laboratories and are commercially available for less that
6000 USD (just to name a few companies, Lot-Oriel, Acton, Roper, Andor

2 We have described how to measure the (6, \) spectrum. This is analogous
to the (k,,w) spectrum and the two spaces are related by the simple
relation # = k; /k and A = w/(2mc). We shall therefore refer without
distinction to one or the other.
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Fig. 3.8. Example of a measured far-field (6, \) spectrum. a 527 nm, 200
fs laser pulse has undergone filamentation in 5 cm of fused silica. The on-
axis and off-axis components are indicated in the figure. The setup used is
shown in Fig.3.6. The colors are real and were registered with a Nikon digital
camera (D70).

etc.) it is possible to either fabricate our own imaging spectrometer using
lens instead of toroidal mirrors or, alternatively, if you are really in a rush
or short of optical components, a “poor mans” version may be obtained
with just one lens and a glass prism. The layout is shown in Fig.3.7. The
input beam is sent through a slit and then into the prism. The slit may be
simply made from a piece of black paper with scissors: we do not want the
slit to be too thin otherwise strong diffraction will severely reduce and blur
the quality of the final spectrum. Although using a relatively wide slit will
also reduce the resolution of the spectrum this is still better than having
to cope with the slit diffraction pattern. The “far-field” lens is then simply
placed directly after the prism and at a distance f from the lens we will have
something similar to the (6,\) spectrum we would have from the imaging
spectrometer. The vertical 6 axis may be calibrated as before but the hori-
zontal A axis must be calibrated with more care (e.g. using a fiber-coupled
spectrometer). In any case, even without calibration, this is a quick setup
that will tell us a lot about the spectrum, for example the extent of the
supercontinuum and the presence of red and/or blue shifted conical emis-
sion tails. An example were we may want to use such a setup at least at a
preliminary stage is for measurements of optical filaments generated in air.
Conical emission is not always visible in air filaments and sometimes appears
only to be blue shifted with respect to the pump wavelength. Changing the
input energy and focusing conditions will change the spectrum. Due to space
limitations or other factors, a prism and a lens are much easier to move and
realign over distances of 1-30 meters than the whole imaging spectrometer
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setup. Furthermore the energies in such an experiment may be quite high
ranging from a few to a few tens of milliJoules and we should be vary wary
of sending such energies into our delicate (and costly) instruments. In any
case energy in the pulse may be reduced by taking the reflection from one
or more wedged glass plates as shown in Fig.3.7: this will also avoid any
additional undesired nonlinear effects occurring within the glass prism.

In Fig.3.8 we show the (0, \) spectrum of a 527 nm, 200 fs, 3 xJ, laser pulse
that has undergone filamentation in 5 cm of fused silica. The output of the
imaging spectrometer was registered by removing the lens from a commer-
cial digital camera (Nikon, D70) and placing the CCD directly in the output
imaging plane. Using such a CCD has a number of advantages, such as the
direct color information (if you are working in the visible range) with a cer-
tain aesthetic quality that is difficult to ignore, a logarithmic-like response
so that the weaker features are readily visible and a reduced blooming in
the saturated high-fluence zones. However if you are interested in perform-
ing quantitative fluence measurements then it is best to use scientific CCD
cameras characterized by an accurate linear response, preferably with a 16
bit dynamic range in order to retain the visibility of the weaker features.
Finally we note that in many cases it is extremely important to register only
single-shot images. Averaging over many shots may give the impression of a
greater readability of the weaker features but even small fluctuations in the
input laser pulse energy may lead to large fluctuations in the output pulse
profile. Therefore many of the features that we are now going to describe
will be washed out by averaging over more than one laser pulse.

If we examine the spectrum we note straight away that there are two well
distinguished features:

e a strong on-axis emission that extends over an extremely broad spectral
range. This is usually referred to as the supercontinuum. We also note the
well-defined interference fringes. Without going into too much detail here
regarding the origin of the supercontinuum, the interference fringes may
be interpreted as a result of pulse splitting [70]. Each split pulse carries
a similar spectrum so that each spectral component at the spectrometer
output is the superposition of two temporally shifted contributions, one
from each pulse. The existence of such fringes tells us that the super-
continuum has a high temporal coherence and the fringe-spacing gives a
direct measure of the temporal spacing between the split pulses, with-
out having to perform any kind of correlation measurements. Pushing
this idea a bit further, it is often possible to observe more than a single
periodicity in the on-axis spectrum. Indeed multiple n periodicities will
indicate the presence of n split pulses and the inverse of the periodicities
will give the pulse temporal separations [70]
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e a marked off-axis radiation, usually referred to as Conical Emission (CE).
This part of the spectrum is clearly related to the conical-wave nature of
the pulse and, as we will see, may provide a great amount of information
on the filamentation process and on the spontaneous formation of the
X waves. Other models have been proposed to explain CE. These may
be divided into two groups depending on the main mechanism that is
considered: Cerenkov-like emission [73, 74] and SPM in the presence of
plasma defocusing [75, 76]. However these treat primarily the case of
filaments in air, in which the CE is often only blue-shifted with respect to
the pump pulse frequency and in the presence of strong plasma generation
and neglect the role of dispersion. The X Wave model on the other hand
establishes a strong link between the features of conical emission and the
dispersion in the medium.

There is a further, very important property of (6, ) spectra of which we will
make large use and that is the possibility, outlined in chapter 2, to derive
the pulse group velocity directly from the measurement. A detailed recipe
for this is as follows:

1. for each wavelength take the angle 6 for which maximum intensity is
observed

2. using the material Sellmeier (or similar) relations for n(w) calculate k =
wn(w)/c

3. find the longitudinal wavevector from k, = kv/1 — 62

4. the group velocity (along the propagation direction) may now be found
from vy = dw/dk,

Care should be taken in deciding whether to use internal (i.e. within the
material) or external angles. The measured spectrum will always give us the
external angles as the Fourier lens is surrounded by air. Therefore, when
deriving the group velocity of the pulse inside the sample the angles must
be rescaled, 6 = 0(\) = Opeasured (X)) /1 ().

Note that this method is very general and has nothing to do with conical
waves. For example, a Gaussian pulse will give a maximum intensity angle
of & ~ 0 for each frequency. Therefore this method will simply give us
the material group velocity, vy = dw/dk, as expected for a Gaussian pulse.
In general this value will not be constant due to second or higher order
dispersion so the peak velocity is usually identified with the group velocity
calculated at the carrier frequency. In a similar fashion we can derive the
group velocity of a tilted pulse and this will have a group velocity that is
different from that of the Gaussian pulse (due to the pulse front tilt) but,
similarly to the Gaussian pulse, it will suffer from dispersion.

If on the other hand our calculations gives us a group velocity that does not
depend on frequency then we may conclude that the spectrum is that of a
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Fig. 3.9. Experimental layout for Gated Angular Spectrum (GAS) mea-
surements.

stationary conical wave. If necessary we may now verify that the derived v,
value is correct by superimposing onto the measured spectrum the conical
wave relation®

2
2mn(\ orn(Mo) 1 [2me 2
6 = n(\) [7”;( )] _ k2 with kzzmA(OO)JrU(;rc—;;),
g

where )\g is the input pump wavelength.

3.3 Gated Angular Spectrum Measurements

In the previous section we showed how to measure the far-field (6, \) spec-
trum of a laser pulse. However we may want more. We may want to know for
example exactly how the various frequencies are distributed inside our pulse
as this would give us some insight into the underlying physical mechanisms
that led to their formation. One possible approach would be to characterize
the full 3D intensity and phase profile of the pulse and indeed such infor-
mation would give us complete access to any physical quantity regarding
the pulse shape that we may desire. Some recent progress has been made in
characterizing the 3D patterns of laser pulses but the measurements are not
always simple and become less so as the pulse becomes more complicated.
Here we shall show how it is possible to retrieve temporally resolved spectra

3 Note that, written in this form, the relation will give “external” angles
(in air) as these are the angles that should be directly compared with the
measurements.
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Fig. 3.10. GAS characterization of a 100 fs laser pulse. The left graphs
show the measured (6, \) spectra for three different delays (between the laser
and gate pulses). The dashed line shows the variation of the pulse frequency
of delay, also known as first order chirp. The right hand graphs show the on-
axis (# = 0) intensity (solid line) and phase (dashed line) profiles calculated
using the FROG algorithm applied to the GAS data. The quadratic phase
variation of the laser pulse confirms the pulse chirp measured directly by
the GAS.

without the need to resort to phase measurements.

In Fig.3.9 we show the experimental layout for the so-called Gated Angular
Spectrum (GAS) measurements. This layout is a mixture between the 3D
mapping layout shown in Fig.3.2 and the (A, \) measurement. The idea is
very simple: using the same setup as for 3D mapping we now remove the
final imaging optics and instead use a lens to produce the spatial far field.
This is then sent into the imaging spectrometer. The final result is a time
resolved (6, \) spectrum that is reconstructed by simply changing the rela-
tive delay 7 between the laser and the gate pulses and registering the (6, \)
spectrum for each 7 [77]. In the next chapter we shall see some measure-
ments of optical filaments characterized using this technique and we shall
see how the results give a clear connection between the on-axis and off-axis
parts of the spectrum.

The measurement as described above is clearly very similar to FROG mea-
surements only now we are measuring the full (6, \) spectrum at each delay
and not just the frequency spectrum. Indeed, if we take only the data for
0 = 0 we may use the standard FROG retrieval algorithm and obtain the
pulse phase profile at r = 0. Alternatively we could perform this last mea-
surement but this time placing the “far-field” lens so that the spectrometer
is now placed in the lens imaging plane, i.e. so as to measure the (r,\)
spectrum at each 7. By applying the FROG algorithm at different r we can
obtain the relative phase profile at each r. However this is not sufficient
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to reconstruct the full 3D phase profile due to the fact that we have no
connection between the phases of different r slices. In other words we are
missing the information that tells us how the phases at each r are related to
each other. Nevertheless a great amount of information is already available
in the GAS measurement and knowledge of the full space-time phase profile
is not always necessary. We shall see in the next chapter an example of the
GAS technique applied to a complicated laser pulse but as a simple example
let us first look at the information that the GAS techniques gives us when
applied to our laser pulse, just at the output of our laser. So the setup is
basically the same as in Fig.3.9 but we have now removed the nonlinear
Kerr medium. The results are shown in Fig.3.10. The left graphs show the
(0, \) spectra as directly measured at the spectrometer output using a 16 bit
CCD camera (Andor). Note that the wavelengths are centered around 370
nm: this is due to the fact that the laser pulse was centered at 800 nm, the
gate pulse at 650 nm, so that the sum-frequency signal generated is in the
ultraviolet region. The figure shows the spectra for three different relative
delays between the laser pulse and the gate pulse. The first thing we note
is a shift of the central frequency toward shorter wavelengths as the delay
increases, i.e. the laser pulse has red-shifted wavelengths on the leading edge
and blue shifted wavelengths on the trailing edge, indicating that our pulse
is chirped. Our data also shows that the frequency varies linearly with delay
so that we may assume that the dominant phase distortion is quadratic. In
other words, if we assume the pulse has a Gaussian profile we may write the
pulse phase terms as

3¢ = = (1Hje)e /o7 o —j(kz—wt) (3.3)

where « is the chirp parameter. The instantaneous frequency of the pulse is

then given by

do T
W= o= wo 204?. (3.4)

2
We thus obtain a relation for the chirp parameter

Awo?
= ——. 3.5
@ AT 2 (3:5)
Using this last relation we evaluate a from Fig.3.10 as o = —1.39. We may

verify this result by performing a FROG measurement of the central part
of the pulse. Actually the data already contains the information necessary
for FROG phase retrieval if we consider only the central portion, around
0 = 0, of the pulse. The right hand graphs show the the retrieved intensity
and phase profiles of both the laser and the gate pulses. As can be seen
the phase of the laser pulse indeed shows a strong quadratic variation and
the chirp parameter obtained by fitting this curve is & = —1.04. The value
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we obtained directly from the measurement is close to the FROG value yet
there is a certain discrepancy. This is due to the fact that the gate pulse
also has a very strong linear chirp and, although the pulse is much shorter
than the laser pulse, only the FROG algorithm is able to retrieve in this
case the true quantitative value. However the important feature of the GAS
technique is not a quantitative analysis of pulse chirp along a certain por-
tion of the pulse. As we have seen FROG is much better for this. We shall
see in the next chapter that the GAS technique becomes really interesting
when the pulse suffers from strong spatio-temporal coupling and therefore
exhibits strong variations of the pulse shape and spectrum at different trans-
verse spatial positions. FROG results in this case become questionable or in
any case have a limited value.

As a final note we underline that gated spectral characterization of ultrashort
laser pulses, i.e. characterization of the spectrum associated to specific time
slices or temporal features in the wave-packet near-field, is a technique used
in some numerical studies of super-continuum generated in optical fibers.
An excellent review of this is given in ref.[78]. However to the best of our
knowledge this technique has only been applied numerically and, more im-
portantly, only the temporal spectrum is considered. This is due to the fact
that all spatial effects are eliminated due to fiber guiding that imposes a cer-
tain transverse profile on the beams and that is not subject to (significant)
modification even in the presence of large nonlinearities.

3.4 Measuring the coherence volume

As a last example of use of the imaging spectrometer let us consider the
problem of measuring the coherence volume of a given pulse. The coherence
properties of our laser pulse or in general of our light source are extremely
important and lie at the basis of many applications. A detailed treatise of
the statistical properties of light may be found in Refs.[79] and [80] while
Ref.[81] gives a condensed yet complete and precise description of coherence
properties.

Intuitively we understand coherence as the ability of our light beam to su-
perimpose with a replica of itself and produce interference fringes. We can do
this either in the (transverse) spatial domain and speak of spatial coherence
or in the temporal domain, and speak of temporal coherence. However the
coherence of a light source is actually a statistical property. That means that
when we give a coherence time or size for our light source this refers to an
average property of the light. A correct definition of (first order) coherence
in terms of ensemble averages: the temporal coherence it is the half-width of
the first-order correlation function of the electric field with mean frequency

), B(r,t) = Alr,t) exp(j ()t — 6(r, 1) [81]
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Fig. 3.11. Schematic layout of the Michelson and Young interferometers. In
the Michelson interferometer coherence is tested by changing the temporal
delay between the two interferometer arms. In the Young interferometer
spatial coherence is tested by changing the distance d between the two slits.

I = <E(T1,t1)E*(T’2,t2)>, (3.6)

where the brackets “()” indicate the average over many replicas of the sys-
tem (ensemble average). Eq.3.6 defines what is usually referred to as the
mutual coherence function in the sense that it describes the coherence as
a simultaneous function of both r and ¢ and these may take any arbitrary
value. We should therefore measure I' and then we will be able to define
the coherence volume (r,t) of our light source by taking the width at some
point of the function e.g. at half maximum or 1/e. Recalling that coherence
manifests itself through interference the most common approach is to resort
to some version of one of the two most famous interferometers, the Michel-
son and the Young interferometer (see Fig.3.11). Let us consider the case
of the Young interferometer. In general we may normalize the correlation
function I" so as to obtain the so-called complex degree of coherence *

. (E(ri,t+1)E*(r2,1))
VAE(ry, ) E*(r1, )(E(ra, ) E*(r2, 1))
4

we substitute t1 and to with ¢t + 7 and t, i.e. we assume that the ensemble
average depends only on the time difference 7 and not on the actual time ¢.
This is true for all those light fields that are stationary, i.e. their ensemble
average is independent of time. Examples are a CW thermal light source
or a laser that does not have amplitude fluctuations in time.

(3.7)
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Fig. 3.12. Interference pattern intensity as a function of the generic variable

4, i.e. either the temporal delay 7 in the Michelson interferometer or the
spatial offset d between the Young slits.
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and I' = vy/(I(r1,t + 7)){I(ra,t)). The electric field at a point P on the
observation plane will be given by

E(rp,t) = a1E(r1,t +7) + agE(ra,t), (3.8)

where a1 and ag account for the different field amplitudes due to diffraction
from the slits placed at different points P, and P, and the time delay 7 =
Ly/c— Ly/c. By taking the intensity at point P we find that the maximum
and minimum values we expect to find are given by

Imax = <Il> + <IZ> +2 V <Il><12>|’y|’ (39)
Linin = (I1) + (I2) — 2+/{11){I2)|7]. (3.10)

In other words we will find an oscillating intensity distribution in the obser-
vation plane with max and min values given by these relations. The fringe
visibility is thus given by

Vp = nae —dnin VUV 0,y ) (3.11)
F Imaz + Imin <Il> + <IQ> T . ‘

This equation tells us that we may directly measure the mutual coherence
of our light source with a Young interferometer by measuring the fringe visi-
bility of the interference pattern. By moving the observation point P we are
changing 7, i.e. we are gathering information about the temporal degree of
coherence, and by varying r; and 79 or the relative separation between the
two slits we extend the information gathered also to the transverse spatial
coordinate. So we have a conceptually very simple manner to measure +.
However the actual experimental implementation of this idea would be ex-
tremely tedious and difficult to perform accurately, mainly for two reasons:

1. in order to observe the interference pattern we will place the observation
plane at a certain distance L from the slits and, due to the relatively fast
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Fig. 3.13. Practical example of skewed coherence generated by reflection
from a grating.

decay of light intensity moving away from the slits we will usually be in
a situation such that P << L. Furthermore the separation d between
the slits will typically be small in order to guarantee that we remain
within the beam transverse dimension and that the diffraction patterns
overlap on the observation screen. This implies that the maximum delay
7 that we will be able to examine with this method will be of the order
of 7 ~ Pd/Lc. For example if d = 10 pm, L = 0.5 cm and Py, ~ 5 mm
then 7 is limited to ~ 30 fs. This may prove to be acceptable for some
cases (e.g. a light bulb has a coherence time of the order of 10 fs) but
for many others it will be a strong limitation

. the second issue is related to spatial characterization as Eq.3.11 tells

us that we must repeat our measurements for many different values of
r1 and 9. This implies having many different samples of slits, all with
identical apertures but placed in different positions and repeating the
measurement with each of these. Furthermore, the slits with a wider rel-
ative separation will require shifting the observation plane further away
in order for the diffraction patterns from the two slits to overlap. This
in turn leads to both a reduction in the overall intensity and a further
limitation in both the the spatial and temporal interval over which the
measurement is significant.

For these reasons among others, it is common to limit diagnostics to the
temporal or the spatial domains separately. In other words we can measure
the spatial degree of coherence by taking Lo = L1 and recording the intensity
as a function of the slit separation or, equivalently, measure the temporal
degree of coherence by using a Michelson interferometer and recording the
intensity as a function of the temporal delay. Taking the widths at half
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maximum of the envelopes of these two measurements will give us the spatial,
¥, and temporal, 7, coherence values, respectively. The coherence volume
could then be naively taken as the product v = ~, - ;. However this last step
is correct only if our light source is such that there is no space-time coupling,
i.e. there is no dependence of the (ensemble averaged) temporal profile on
the transverse spatial position. This is indeed true in many cases but a very
simple example in which is not true is a white light or broadband source that
has been reflected from a grating (see Fig.3.13). The pulse front will become
tilted upon reflection from the grating so that the coherence volume will
become skewed in space-time coordinates. Trying to measure the temporal
coherence with a Michelson interferometer and the spatial coherence with
a Young interferometer, in other words treating space and time separately,
will lead to a coherence function (7, t) that is not skewed and considerably
smaller than the true function. Note that in general the Young interferometer
is able to distinguish between the two cases of a cylindrical-like coherence
volume and a skewed volume. In the former case the interference maximum
P will be along the slit axis while in the latter case it will be shifted at
an angle. Referring to Fig.3.14, this may easily be seen by evaluating the
interference maximum position as the point P for which the optical path
difference AL goes to zero. We consider two cases, one in which the wave
fronts are tilted at an angle 6 and another in which we simply have plane
waves propagating at an angle # with respect to the slit axis:

ALy = Ly — Ly — dtan(0),
ALangled = L2 - Ll — dSlIl(@)

So for example, if L = 20 mm, d = 30 pym and § = 0 deg then we will ob-
viously have maximum interference at x = 0 on the observation plane. But
if 8 = 30 deg, the tilted wave will give a maximum at z = 14 mm. However
some confusion may arise due to the fact that a measured value of x = 14
mm is also compatible with the interference maximum expected for a simple
plane wave incident (with no tilt) at a # = 35 deg angle with respect to the
slit axis. So the Young interferometer will not be able to actually distinguish
between these two cases unless a full coherence volume measurement is per-
formed.

The Wiener-Khintchine Theorem

Let us now consider a system that is stationary, i.e. the amplitude of the
function f(¢) does not change with time and is ergodic, i.e. such that the
ensemble average may be substituted by a temporal average
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Fig. 3.14. Young interference scheme for tilted waves and angled incidence
of plane waves.

1 +7/2
(f(t))y = lim / f(t)de. (3.12)
T—oo T —T/2
In other words, the replicas of our system are obtained by integrating in
time due to the fact that the system itself evolves in such a way as to
spontaneously cover all possible replicas. Under such conditions the temporal

autocorrelation function, defined as

_ 1 +T/2
I'(r) = lim / flE+7)f(t)dt. (3.13)

is equal to the autocorrelation function I'(7), i.e. the time autocorrelation
functions of all sample functions are equal to each other and are also equal
to the statistical autocorrelation function. It is therefore pointless to distin-
guish between the two autocorrelation functions for such processes. We may
now introduce the Wiener-Kintchine theorem that states simply that the
autocorrelation function and the power spectral density S form a Fourier
Transform pair ([80]). Here the spectral power density is understood as de-
fined for a random process

(f(w)f*(w))
S(w) = lim 27
() Tgréo T
Therefore, taking the function f as the electric field, the Wiener-Kintchine
theorem tells us that the correlation function I” is obtained from the Fourier
transform of the ensemble averaged spectral density:

(3.14)

I(r) = FT{{SW))]. (3.15)

This relation may be generalized to include also the spatial variable x and
taking the two-dimensional (k| ,w) Fourier transform
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Fig. 3.15. Experimentally measured super-fluorescence spectra (converted
from (6, ) to (k1 ,w)) generated in a BBO crystal with the setup shown in
Fig.3.16, for three slightly different phase-matching conditions.

I(z,7) = FT[(S(k1,w))]. (3.16)

In other words, we may recover the correlation function by measuring the
(k1 ,w) spectrum averaged over many replicas of our system (e.g. over many
pulses for a pulsed laser). We may therefore combine the (6, \) measurement
as described above with the analysis suggested by the two-dimensional gen-
eralization of the Wiener-Kintchine theorem so that we have an extremely
efficient and non-ambiguous coherence volume measurement technique. In
order to prove the validity of this measurement technique we show a charac-
terization of the coherence volume of the so called super-fluorescence signal
generated via parametric down conversion in a crystal with second order
nonlinearity ([82]).

Super-fluorescence coherence

Super-fluorescence is a spontaneous manifestation of parametric down con-
version that is observed in crystals with large second order nonlinearity
(x?) such as Beta-Barium-Borate (BBO) or Lithium Triborate (LBO). By
pumping with an intense laser pulse with frequency w a wide-bandwidth
signal is produced around w/2. This signal is typically observed as col-
ored conical emission so that different frequencies are emitted at differ-
ent angles with angles and frequencies depending on the specific phase-
matching conditions in the crystal (see for example Ref.[83] for more de-
tails on this topic). The intensity distribution follows the phase-matching
curves which in turn are determined by the material dispersion proper-
ties. Indeed the parametric gain is described by exp(2g(k, , Aw)z). Within
the slowly-varying envelope approximation, the growth rate reduces to
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Fig. 3.16. Experimental layout used to measure the (0, \) spectrum of the
super-fluorescence generated in a BBO crystal pumped by a 352 nm pulse.

g(ky, Aw) = (02/4k3 — (K" Aw?/2 — ki /2ko)?)'/? ([82]) so that the spec-
trum exhibits a hyperbolic structure, i.e., the locus (6, \) of the peak gain
is X-shaped. In Fig.3.15 we show three different measurements of the super-
fluorescence (0, \) spectrum generated in LBO in three different phase-
matching conditions (controlled by the crystal temperature). As expected
the intensity is distributed along X-shaped curves. Also note how the spectra
show a marked speckle pattern. This is a result of the parametric amplifica-
tion generating the super-fluorescence signal by which a signal at w generates
so-called signal and idler waves at w/2 + dw and w/2 — dw, respectively. The
initial seed for the signal idler waves is given by zero-point quantum fluctua-
tions and the speckle pattern is a direct manifestation of the random phases
that characterize the quantum noise. In other words the super-fluorescence
signal appears to be made of many different “modes” each with a different
phase. In a similar fashion the white light emitted from a light bulb is con-
sidered as composed of many temporal modes with temporal coherence of
the order of 10 fs that may be measured with a Michelson interferometer.

Following the recipe dictated by the Wiener-Kintchine theorem we use the
setup shown in Fig.3.16 to measure the super-fluorescence (0, \) spectrum
which is averaged over many pulse shots (the ensemble average). The result
of this measurement is shown in Fig.3.17. By taking the two-dimensional
Fourier transform we obtain the coherence volume that is clearly X-shaped,
i.e. skewed along non-trivial space-time trajectories [82]. The far-right panel
in Fig.3.17 also shows the experimental intensity pattern obtained by mea-
suring the interference from the same field but with a double-slit Young
interferometer. As described above, the skewed coherence trajectories lead
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Fig. 3.17. Correlation function measurement of BBO super-fluorescence
generated and measured using the setup in Fig.3.16. the central and far-left
panels are different representations of the same X-shaped correlation func-
tion. The far-right panel shows the super-fluorescence pulse characterized
using a Young interferometer: the two off-axis interference peaks, indicating
skewed coherence, are clearly visible.

to the appearance of off-axis interference peaks but no further information,
such as the actual shape of the correlation function, may be determined from
this single Young measurement.

Let us stress the general relevance of X shaped coherence by underlining that
it constitutes the natural state of coherence for all nonlinear systems whose
governing equations exhibit a space-time hyperbolic structure. X-coherence
is thus expected to arise in any multidimensional optical system involving
nonlinear wave propagation in normal dispersion. A typical example is the
modulational instability of plane waves propagating in cubic, X(?’), nonlinear
Kerr media (see Fig.1.3).

3.5 Seeing the light

In all the experimental layouts shown in these pages the final experimen-
tally relevant quantity is recorded on some kind of two dimensional imaging
hardware, basically a two dimensional array of photodetectors. Indeed the
experiments described in this chapter are the result of the search to find the
best way to visualize information of the laser pulse, that is an intrinsically
three dimensional, projected onto the two dimensions of the photodetector
array. Furthermore the photodetector array will transform the light wave
into an electric signal which will then be processed by standard electronics
and therefore lead to a serious limitation to the shortest temporal event that
may be directly revealed. A fast single photodetector may have a response
time of about 100-10 ps but for a two dimensional array we will be lim-
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ited to the 1 ms range, in the best case. We have already seen that these
limitations may be circumvented by using gated measurements in which it
is the light pulse itself that determines the temporal resolution but in any
case the photodetector will not measure directly the intensity profile, i.e. the
instantaneous space-time energy content, of an ultrashort laser pulse. Here
we will briefly overview the information that our photodetector array will
give us and how we should choose the instrument in order to optimize this
information.

3.5.1 CCD and CMOS cameras

Two dimensional photodetector arrays are commonly available in the form of
Charge-Coupled Devices (CCD’s) or Complementary Metal-Oxide Semicon-
ductor (CMOS) arrays. Both devices perform the basic operation of trans-
forming light signals into electronic signals. The incoming photons are ab-
sorbed by the sensor and the energy is then released in the form of electric
charge. The main difference between the two sensors is the way in which the
electric charge is then read from the array. A CCD transports the charge
across the chip and reads it at one corner of the array. An analog-to-digital
converter (ADC) then turns each pixel’s value into a digital value by mea-
suring the amount of charge at each photo-site and converting that mea-
surement to binary form. On the other hand CMOS devices use several
transistors at each pixel to amplify and move the charge using traditional
wires. The CMOS signal is digital, so it needs no ADC. Due to technological
limitations these differences lead to some practical issues:

1) CCD sensors create high-quality, low-noise images. CMOS sensors are
generally more susceptible to noise.

2) Because each pixel on a CMOS sensor has several transistors located next
to it, the light sensitivity of a CMOS chip is lower. Many of the photons hit
the transistors instead of the photodiode.

3) CMOS sensors traditionally consume little power and roughly 100 times
less than conventional CCDs.

4) CCD sensors have been mass produced for a longer period of time, the
technology is more advanced and cheaper. They therefore tend to have higher
quality pixels, and more of them.

Even if CCDs are by far the most widespread sensors, it is quite common
to find CMOS technology applied to the sensors used in commercial digital
cameras and that therefore make the most of a much longer battery life.
Furthermore mass production has concentrated solely on a single material
platform, silicon. Silicon is the preferred material for the microprocessor
industry and this is the main reason for the excellent quality of silicon-
based CCD sensors. Fortunately the silicon absorption band-gap is located
around 1000 nm so that all higher energy (shorter wavelength) photons will
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be absorbed and transformed into electrons. The sensitivity at 400-700 nm
wavelengths is usually quite high but some applications require high sen-
sitivity in the infrared region where silicon is transparent. Other materials
must therefore be used, Aluminum-Gallium Arsenide (AlGaAs) for example
guarantees high sensitivity in the 1000-1700 nm range. Using such materials
in turn implies that there is no longer any technological advantage in the
CCD configuration and indeed these infrared detectors are typically CMOS.

3.5.2 Color

The single pixels that make up our CCD or CMOS array are color blind.
All they do is simply count the number of (photo-)electrons generated by
the absorbed photons. Color information must therefore be obtained by
separating light into its three major red, green and blue (RGB) components,
for example with a prism or selective filters, and then using a separate sensor
for each of the three color channels. Note that standard color emulsion films
convey color information in this same way: the film is composed of three
different layers, each one sensitive only to one of the three RGB channels.
Alternatively a much cheaper approach may adopted by which the sensor is
only one but each single pixel is covered by a wavelength selective filter so
that the pixels are sensitive exclusively only to red, green or blue light. The
most common pattern of filters is the “Bayer” filter pattern. This pattern
alternates a row of red and green filters with a row of blue and green filters.
Therefore the pixels are not evenly divided and there are as many green
pixels as there are blue and red combined. This is because the human eye is
not equally sensitive to all three colors and it is necessary to include more
information from the green pixels in order to create an image that the eye
will perceive as a true color.

3.5.3 Energy measurement

The color CCD’s considered in the previous section suffer from a severe
limitation due to the fact that the color response imposed on the sensor
is studied in order to mimic the color responsivity of the human eye. The
response will therefore typically be strongly nonlinear with a logarithmic-like
dependence of the output current on the incident light fluence and maximum
sensitivity at green wavelengths. This may represent a serious problem if
quantitative energy measurements are to be made. In this case a scientific
CCD with linear response should be used. Such cameras may exhibit a direct
proportionality between incident light fluence and generated photoelectrons
with a large 16 bit dynamic range and are ideal for many applications.
However care must still be taken in comparing experimental and numerical
spectra.
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Photo-counts and fluence

The single photo-sites or pixels of our CCD will give a direct indication of
the total number of photons in our beam. A pixel with 100% conversion
efficiency will convert every single photon with an energy hw that lies above
the material band-gap (e.g. 1.1 eV for silicon) into an electron. These elec-
trons are often referred to as photoelectrons in order to distinguish them
from thermal electrons, that is electrons that are generated by thermal fluc-
tuations and are thus a source of noise and not correlated in any way to the
optical beam we are measuring. However the photoelectron does not carry
any information regarding the actual energy of the optical photon that gen-
erated it and we should therefore bear in mind that the quantity we are
actually measuring with our CCD is not directly the beam fluence (time-
integrated intensity). This is usually of little importance but if we perform
spectral measurements and we really are interested in the fluence distribu-
tion then we should multiply the photo-count distribution by hw = h2mwc/.
So this will give a variation along the X\ axis of the measured signal that in
many cases (e.g. large spectral extent) may become important.

Note also that in this discussion we assumed a 100% quantum efficiency
(conversion efficiency from photons to electrons) at all wavelengths. This
was just an approximation in order to simplify the discussion but we must
now bear in mind that typical silicon CCD responsivities are peaked around
700 nm with maximum values of the order of 80-90%. This value decreases
smoothly to about 10% around 300 nm and more abruptly to zero at 1100
nm. Each CCD will have a specific quantum efficiency curve that depends
on construction details and the actual fluence values are retrieved only after
normalizing for this specific curve.

Coordinate transformation

Most of the experimental methods described in this chapter are based on
(0, A) measurements and so far we have always assumed that the information
contained in the (k| ,w) spectrum is identical to that contained in the (6, \)
spectrum. This is indeed true however there may be cases in which we may
want to compare at a quantitative level the numerically simulated spectra,
that will typically be in (k| ,w) coordinates, with experimental spectra, that
will typically be in (6, \) coordinates. The axes of these spectra are related
by the simple relations k; = 0k and w = 2mwc/A\. However care should be
taken in accounting for how the spectral power. The total energy contained
in the spectrum is given by

E= // Sk, w)dk, dw = // S(6,\)dOd. (3.17)
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Fig. 3.18. Experimentally measured (0, A) to (k,w) spectrum of a filament
generated from a 1055 nm input pump and recorded with a modified (ex-
tended spectral range) digital photocamera (Nikon D70). The input energy
was 40 pJ and the Kerr medium was a 15 cm bar of fused silica.

Using the relations to transform from &, ,w to 6, A we find

27 2me
_ [ sthy.0) - agan
= [[ stz

= // S(6,\)dOdA
w3

= S(0,)) = S(k.,w) (3.18)

2mc?’
So we see that the fluence should be multiplied by w? in passing to (6, \)
coordinates.

In conclusion, when comparing experimental (6, \) measurements (recorded
with a CCD) with numerically calculated (k;,w) spectra three different
correction factors must be accounted for: i) renormalization to the quantum
efficiency curve of the CCD camera to account for non uniform spectral
sensitivity, ii) the transformation of photo-counts into fluence (that scales
as 1/ or w) and, iii) the rescaling induced by the change of coordinates
(that scales as w?).

3.5.4 Digital camera or “scientific” CCD?

So the question arises, should we use a linear-response scientific CCD or
a reflex digital camera? The answer clearly depends on the final use we
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intend to make of our data. Quantitative comparison of the spectral power
density between numerically simulated spectra and measurements (or even
between different measurements) requires use of a linearized CCD. However
we may often be interested more on the shape of the spectrum in (6, \) space
rather than in the actual value of the spectral power. In this case using a
more common digital camera does have some positive aspects. We briefly
comment on some of these issues:

e Linearized silicon CCD cameras are purposely studied for scientific appli-

cations. The responsivity or quantum efficiency is usually high and may
reach typical values of the order of 80% or more in the 700-800 nm range.
For certain applications with low light levels higher responsivities may
be required and are obtained using so called back-illuminated sensors.
These differ from standard CCD chips in that the incoming light under
measurement arrives on the sensor from the rear side, i.e. opposite to
that where the electronic wiring resides. The silicon chip is thinned down
so that the generated photoelectrons are still collected by the electronics.
Note that although efficiencies of the order of 95% or more may be at-
tained with such cameras it is important to ensure that the thinned CCD
chip is treated in order to avoid annoying Fabry-Perot cavity effects be-
tween the front and rear silicon faces. This effect will be more important
at wavelengths that depend on the actual thickness of the silicon chip
but usually manifests itself in the 700-1000 nm range.
Digital cameras on the other hand typically have a much lower quan-
tum efficiency, in the order of 10-40%. Furthermore the camera response
is not linear but logarithmic-like. The response is purposely studied so
as to mimic to a certain extent the logarithmic response of the human
eye and that of standard emulsion films used in photography. For the
same reason the peak sensitivity of these cameras is centered at green
wavelengths, close to 500 nm.

e This brings us to the issue of color. Although color information is often
superfluous in scientific measurements we cannot avoid the fact that the
world is colored: by adding color to our data, although this may be rep-
etition of data that is already present (if we are using a spectrometer)
we are effectively adding an extra dimension to our graph. However care
must be taken. We have already pointed out that color digital cameras
are studied so as to reproduce colors as seen by the eye and this implies
that the sensitivity of the CCD chip is artificially limited so as to be
relatively insensitive to the near-infrared (700-1100 nm) range. This is
rather unfortunate as most common lasers are operated at 800 nm. How-
ever a very simple cure for this problem is available: the spectral range
is actually limited by a simple filter that is placed on top of the CCD
chip by the manufacturer. By taking the camera apart this filter may be
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easily removed and substituted with a clear fused silica plate thus restor-
ing the full spectral range up to 1100 nm. From personal experience I
can say that this operation is most easily done with Nikon cameras as
the filter is removed by releasing four screws. The same operation with
Canon cameras is slightly more messy due to the fact that the filter is
glued on. Detailed instructions and the possibility to buy the substitute
clear glass window (or even have this done for you) may be found at
http://www.lifepixel.com.

Blooming is the technical term used to describe the spilling of photo-
electrons from highly saturated photo-sites to surrounding pixels. There-
fore highly saturated areas in the image will bloom and the saturation,
seen as a completely white spot, will spread and cover areas of the image
that would otherwise contain useful information. This problem is partly
solved and greatly reduced in commercial color cameras by creating an
inactive region around each pixel that will collect and drain the excess
photoelectrons. Professional CCD dealers (e.g. Kodak) will give a spec-
ification to the amount of blooming suppression which may even be of
the order of 8 bits.

Last but not least one should finally decide what to use also based on
the available budget. A good 16 bit dynamic range, cooled scientific CCD
camera with a relatively large ~1x3 e¢m? chip will cost something in the
15000 euro range (complete with imaging software). A professional color
CCD back, with a much larger 2x3 ¢m? chip, 16 bit dynamic range can
be bought for roughly the same money. The advantages of the scientific
CCD are that these CCD’s usually come ready to be attached to your
spectrometer, they are linear and have a higher sensitivity. On the down
side you have no color information, bad blooming effects and a smaller
chip. A good compromise is to have both a scientific CCD and a less ex-
pensive prosumer digital camera such as the Nikon D200 or D80 (Canon
and other brands have similar cameras) that costs less than 2000 euro.
The chip size is about 1.6x2.4 ¢cm and dynamic range is 8-12 bits (de-
pending on how you save the image) but the quality and ease of use is
still excellent. All spectra shown in these pages were taken either with a
16 bit Andor DV420 (scientific CCD) or with Nikon D70 (color digital
camera). An example of the kind of spectrum that can be registered us-
ing a Nikon D70 (with extended spectral sensitivity) is shown in Fig.3.18.
The input pump was a 1 ps, 1055 nm wavelength pulse forming a fila-
ment in 15 cm of fused silica. The formation of X waves at the pump
wavelength can be clearly seen along with the huge spectral extension
into the 400 nm region. The conical (off-axis) features in the 600-400 nm
region correspond each to a different X wave generated through multiple
splitting events (here a total of 6 can be observed).
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This concludes that chapter on diagnostics and measurement techniques. In
the next chapters these will be used to study the details of ultrashort laser
pulse filamentation dynamics.
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Modeling filamentation and conical wave
propagation.

This chapter is dedicated to a detailed description of the propagation equa-
tion used to simulate numerically filamentation and conical pulse propaga-
tion as briefly hinted in Chapter 1 (see Eqgs.1.31 and 1.32). Alongside the
description of the model itself we shall lay out the basic method to be fol-
lowed in writing an efficient code based on these equations.

4.1 Model for ultrashort laser pulse propagation

Among the numerical tools developed to investigate the generation of conical
waves by filamentation, a propagation code was used which allows simula-
tions of a nonlinear envelope equation including various physical effects as
source terms. The model describes the forward propagation of the envelope
of the laser field with carrier frequency wp and wavenumber kg = k(wp). It
takes into account the effects of diffraction, group velocity dispersion, Kerr
self-focusing with a possible delayed Raman contribution, nonlinear losses
and optical shock formation. Let £ denote the envelope £(r,t, ) in case of
cylindrical symmetry around the propagation axis, or £(z,y,t,2) when no
symmetry is assumed. The propagation equation then reads:

o i

’CE - 5 [Aj_g + D(S)] + ko [(T2NKerr(6) + TNNLL(E) + NPlasma(pa 5)]
(4.1)
where A = 0%+ (1/r)0, for cylindrically symmetric beams or A = 92 —l—@g
otherwise, D denotes the operator accounting for all dispersive terms,
Nkerr(€) and Nnpp(€) denote the nonlinear source terms associated with
the optical Kerr effect and nonlinear losses, Npjasma(p, £) denotes those as-
sociated with plasma effects, T = 1 + iw, '9/0t and K = ko + iky3/0;. The
operator D can be readily expressed only in the spectral domain. Let the
Fourier transform associated with the temporal coordinate ¢ be defined by:

A +m .
E(r,w,z) = E(r,t,z)e”“'dt (4.2)

—00
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A useful expression of D(E) is then obtained in the spectral domain:
D(€) = (K(w) - K¢, (4.3)

where K = ko + ky(w — wp). It can be readily seen by a small w — wy
expansion that: (k%(w) — K2)/2K ~ El(w — w)?/2 + ko (w0 — wo)?/6 + - -,
which shows that the second term in the rhs of Eq.4.1 accounts for GVD
at second and higher-orders. Since Eq.4.1 accounts for space-time focusing
and self-steepening of the pulse described by operators K and T', the model
is virtually not limited by the slowly varying envelope approximation (along
the temporal direction) which is standard for equations of the nonlinear

Schrodinger type [28]. Single cycle pulses are modeled properly by Eq.4.1.

4.1.1 Derivation of the propagation equation

We briefly recall the derivation of Eq.4.1 and specify the approximations
made. In this section only, ¢ and z will refer to time and the propagation
distance in the laboratory frame while 7 and ¢ will refer to these quantities in
the frame of the propagating pulse. From Maxwell equations and constitutive
equations for the medium, the vector wave equation governing the evolution
of the laser pulse in a transparent nonlinear medium reads:

2 t
V’E-V(V-E) - 612;’;2 / n?(r,t —tB(r,t', 2)dt’ =

Py 0J,

where n?(w) = 1 + egx")(w) is the linear index of refraction due to vacuum
and bound electrons, x(!) is the linear susceptibility, P, is the nonlinear
polarization associated with bound electrons, J, is the plasma current den-
sity associated with the free electrons [9]. Several successive approximations
are made to derive Kq.4.1, specified here with the terms they allow us to
neglect:

First, the electric field is assumed to remain linearly polarized along a
direction e, transverse to the propagation axis. Thus, E = Fe,, the term

V(V - E) can be neglected and Eq.4.4 can be rewritten in a scalar form.

0’E 1 9% [! 0?Py  0J
AE+ 5 — —5+5 2(rit — E(r,t', z)dt’ = =2
LT T 2o /Oo” (r,t = )E(r£,2) “O( o m)
(4.5)
Second, we consider first the linear part of the wave equation (4.5):

t
(V2 + 02)E(r,t, 2) — c%af / An2(rt— VBt 2) =0 (46

—0o0
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The laser field is rewritten by using the carrier wave and envelope:
1
E(r,t,z) = 55(7“, t,z)expli(koz — wot)] + c.c. (4.7)

Note than at this stage, no approximation is made regarding the shortness
of the pulse duration compared to the cycle duration 2ww, ! In the Fourier
domain, the propagation equation of the envelope then reads as:

(V2 + 0% 4 2ikod. — k2)E + K2 (W)€ =0, (4.8)
which we rewrite in the temporal domain by using Eq.4.3:
(V2 + 02 + 2iko0, — k3)E + (D + KHE =0. (4.9)

Third, for numerical convenience, we will rewrite propagation equations in
the reference frame of the laser pulse: 7 = ¢ — k{jz,{ = z ; the first order
derivatives along ¢ and z read as: 0, = 0¢ — k(0r, 0y = Or; by introducing
these expression in Eq.4.9, the linear terms in the propagation equation are
expressed as:

(V3 +07 —2k(0; O¢ + k({02 +2iko 0 — 2ikok0r — k) E+(D+K?)E = 0. (4.10)
After simplification of the 4th, 6th 7th and 9th terms in Eq.4.10, we otain:
(V3 + 0F +2iK0, )€ + DE = 0. (4.11)

The last step to retrieve Eq.4.1 consists in the slowly varying envelope ap-
proximation along the longitudinal direction (: (3? < ko0, allowing us to
neglect the second order derivative; this yields the linear part of Eq.4.1.

By applying the envelope decomposition to the nonlinear polarization
and current, it is finally possible to reintroduce the nonlinear terms:

2iK0:E + V3 E +DE = g (—wT*Poy — iwoTTy) (4.12)

where Py represents the Kerr term and 7, includes both nonlinear losses
and the plasma contribution in Eq.4.1.

2iko NKerr = —HowWa Pl (4.13)
QikQ(TNNLL + Np]asma) = —Moionjp (4.14)

4.1.2 Initial pulse

Initial conditions must be given to start the propagation. Without loss of
generality, the field distribution £(r, ¢, z = 0) can be arbitrary; however, the
output field of a laser is usually modeled as a Gaussian beam and pulse
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E(r,t,0) = /1, LA Ct? (4.15)
r = eXp |———5 —t—=F — 5 — 1 . .
7 0€xXP wi 2f 12

with beam width wg, temporal half width t,, input peak intensity Iy, input
peak power P, = wwglo/2 and energy Ei, = Piytpy/7/2. When the beam
is focused, the curvature radius f of the beam and the focusing distance d
are related by the relation:

f=d+27/d, (4.16)

where 2y = kow? /2 denotes the Rayleigh length associated with the beam

waist wy and
wo

W= ———————,
d V1+23/f2
where 2y = k:ow% /2 denotes the Rayleigh length associated with the beam
width wg.
When the pulse is chirped, the chirp coefficient C is linked to the minimal

pulse duration t,, obtained by propagation of a pulse of duration ¢, in a
dispersive medium characterized only by second order dispersion kj:

(4.17)

tp

by = ——B
14 C2h

(4.18)

4.1.3 Nonlinear terms

The nonlinear polarization P, reads at the dominant third order for a
centro-symmetric medium:

P, = e |E]’E (4.19)

The corresponding envelope reads:
3
Par = eox €€ (4.20)

By introducing in Eq.4.20 the nonlinear index coefficient ny = 3y J4egend,
and by introducing the result in Eq.4.13, an expression is obtained for the
Kerr term (for an intantaneous response of the medium) :

oy
Nkerr = Z?On2‘g|257 (421)

I Note that we are defining the nonlinear index in a slightly different way
with respect to Chapter 1. Although the approach shown in Chapter 1 is
formally correct, the most common definition and use of units are those
used here.
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where ny|€]? is assumed to be dimensionless, i.e. a factor egcng/2 was can-
celed in the unit conversion and |€|? was assumed to be expressed in W /cm?.

The optical Kerr effect includes in general the electronic contribution
which is nearly instantaneous and a delayed component of fraction «, due
to stimulated molecular Raman scattering. The Kerr term therefore reads
as

NKerr(g) -

i%m ((1 —a)|E(r,t,2)]" + a/ R(t —T7)|E(r, T, z)2d7-> £,(4.22)

The function R(¢) mimics the molecular response with a characteristic time
I'! and frequency wg:

R(t) = Roexp(—I't)sinwgt (4.23)

where R = (I'? + w%) /wk.
Nonlinear losses describe multiphoton processes of order K:

NnipL(€) = —671(|5‘2K_25. (4.24)

Equation 4.24 is found by introducing a current Jyrpy such that J - E =
KthUK‘EFKpat

Finally, when the pulse is so intense that it ionizes the medium, the
plasma term

o .
NPlasma(p) = _5(1 + ZWTC)Pg, (425)

where p denotes the electron density accounts for plasma absorption (real
part) and plasma defocusing (imaginary part). Equation 4.25 depends on
frequency w both directly and through o(w) so that it is in principle exact
only in the Fourier domain, i.e. by replacing p€ by p€. It follows from the
evolution equation for the plasma current density:

oy, J, €

— 4+ = =—pE 4.26

ot + Te me'o ’ (4.26)

where 7¢ is the electron collision time. Solving Eq.4.26 in the Fourier domain
yields:

A 27, 1+ iwr. —

= —— —pF 4.27
P me 1 +w27'02p ( )

As retrieved from (4.27), The cross section o for inverse Bremsstrahlung
follows the Drude model [84] and reads:

k‘o WTe
n%f’c (1 +w?72)

o(w) = (4.28)
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where p. = eomewg /€2, the critical plasma density above which the plasma
becomes opaque. Equation 4.25 is finally found by introducing Eq.4.27 into
Eq.4.14.
The evolution of the electron density p entering in Eq.4.25 is governed
by:
dp _ Bk
ot~ Khw

which describes the generation of the plasma by multiphoton ionization (first
term on the rhs) and avalanche with rate (o/U;)|E|2.

In the often encountered limit of large collision times 7. > w, L the
defocusing term in (4.25) can be expressed as a function of the critical plasma
density p. beyond which the plasma becomes opaque owoTep = kop/n3pc.

ek + —pl&|?, (4.29)

4.2 Numerical implementation of the nonlinear envelope
equation

We will describe the method used to build step by step the general numerical
tool allowing us to perform numerical resolution of Eq.4.1. To this aim, we
first reduce Eq.4.1 to the simplest case of linear propagation under the effect
of diffraction only, which constitutes the basis of the propagation code. Other
physical effects will then be added one after another in a way that extends
the generality and validity of the numerical tool which can be built without
increasing too much its complexity.

4.2.1 Diffraction

Diffraction occurs in all media and even in vacuum. It is described by the
paraxial equation

86’ '

We start by describing beam propagation so that £ is assumed to depend
only on the transverse variable r and the evolution variable z. We will de-
scribe first of all a simple but efficient scheme; we therefore discretize the
radial axis for a box of finite size 7,4, by using a uniform grid r; = jAr
of N, steps Ar. Similarly, we will describe the propagation over a distance
Zmaz Dy making steps z, = nAz of constant size Az. Let E]” denote E(r;, zn)
A standard scheme to perform numerical simulations of equations having the
same structure as Eq.4.30 is the Crank-Nicolson scheme. It is an implicit,
second order inconditionally stable numerical scheme. Below, A; denotes
the discretized diffraction operator defined as

L, -Er) (43D)

AE? = E; —2E”+E+1+27 i T
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and formally represented as a tridiagonal matrix

2 % 0 .- 0 0 Eq

u —2 vy 0 0 0 EY

o . .. 0 0 0 :

n

MNEF=10 0w -2 v 0 0 Ej
0 0 0 0 '

0 -+« --- 0 uy, -1 —2 vN, -1 :

[ 0 uN, -2 En

Ny

where u; = 1 —1/2j and v; = 1+ 1/2j. The first line is undefined at this
stage but the first and last lines will be replaced as indicated below for
taking into account boundary conditions.

The Crank-Nicolson sheme reads as

5
B — B = i (A B+ AEY) (4.32)

where § = Az/2ko(Ar)?. The solution of (4.32) reads as

5 5
B = (1—igAp) T (L4 igA) By (4.33)

and requires multiplication of the tridiagonal complex matrix Ly = 1 +
i(6/2)A; by the vector E7' and the inversion of the tridiagonal complex
matrix L_ =1—1(6/2)A4;.

0 0 0 0 0 Ep
- .0 0 :
LyEf=| 0 Zu;j1—1i5 2v; 0 E?
0 0 :
00 0 0 0 EY,
1 -1 0 0 0 Ep
oo 0 0 :
LEj=|0 —3u;1+i6—5v; 0 | [ E}
0 0 ' :

0 O 0 0 1 By,
The different steps to build a very simple propagation code for simula-

tions of Eq.4.30 are therefore the following:

e 1- definition of the initial data, laser and medium parameter, e.g., beam
width wq, focusing length f, etc.



90

o 2-

4 Modeling filamentation and conical wave propagation.

definition of grids and quantities useful for the propagation over one

step but which are z invariant.

o 3-

r-grid: r; = jAr, for j =0,--- ,N|.

matrix Ly =1+14(0/2)4;

matrix L_ =1—14(5/2)4;

definition of boundary conditions: 9/0r = 0 at r = 0 and € = 0
at 7 = 7Tpae- This is achieved by changing all elements on the first
and last lines of L4 into zero and by setting the first line of L_ to
(1;=1;0;--- ;0) and its last line to (1;0;0; - - - ;0). Boundary layers are
usually added to ensure tranparent boundary conditions as indicated
in the separate section below.

calculation of the inverse L_!

calculation of the product L = LZ1L

definition of the initial field, e.g., for a Gaussian beam E(r,z = 0) =

Eoexp(—r? /w3 — ikor?/2f)

E9=E&(rj,z=0)

e 4- loop on propagation steps with diagnostics each M steps:

outer loop: k=0,..., Kna

inner loop: m=1,....M
n=kM+m
E? =LE"!

J J

perform type 1 diagnostics
end inner loop
perform type 2 diagnostics

end outer loop

Steps 1 to 3 correspond to the initialization of the propagation. Step 4 con-
stitutes the bulk of the scheme; it is centered around one propagation step
following Eq.4.33, the core of the scheme. T'wo types of diagnostics are indi-
cated (they are specified below) to separate the fast diagnostics consuming
few time or memory, thus performed at each step, from those needing longer
times or larger computer ressources.

4.2.2 Diffraction and nonlinear terms

We consider now the model including simple nonlinear terms such as the
instantaneous part of the optical Kerr effect and nonlinear losses

o8 _ i

o 20 DPK ok
9 QkALg—H . na|E|*E 5 €] & (4.34)
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In order to extend the Crank-Nicolson sheme to Eq.4.34, we use the Dufort-
Frankel scheme which is an explicit scheme working in general for all type
of nonlinear terms. The advantage of this scheme lies in the fact that it
preserves the second order accuracy of the Crank-Nicolson sheme and allows
faster calculation of the right hand side in Eq.4.34 without resorting to a
completely implicit scheme which would need implementation of predictor-
corrector routines and of a large number of matrix inversions.

It reads as
Entl E”—'(S AEM 4+ AED 3N” IN”*1 4.35
i B =g (A BT + AGEF) + SN - SNFT (4.35)
where
n WO BK | 12K —
NJ'= N(E}) :Az{zcn2|E§‘2E§‘—2|Ej 2% QE?}. (4.36)

Equation 4.35 allows us to express the vector EJ’?H as a function of previ-
ously obtained fields E7' and E?_lz

EM = (L) LyE} + gN (B}) — %N 2] (4.37)

It is no longer necessary to compute and store the product LZ'L, in the
initialization step 2. Only the 4th step in the numerical scheme indicated
above must be modified as:

e 4- loop on propagation steps with diagnostics each M steps:

outer loop:
k=0,..., Kna
inner loop:
m=1,....M
n=kM+m
calculate and store vector N;“l (loop j,---,N1)
calculate V}”_l = L+E;‘_1 (projuct matrix-vector)
add S;“l = anfl + (3N]’7‘*1 - N}%Q)/2 (sum of vectors)
E} = LZIS;‘_I (product matrix-vector)

perform type 1 diagnostics
end inner loop
perform type 2 diagnostics
end outer loop

The overall stability of the scheme depends on the nonlinear terms, so
that a control of the step size Az may be necessary in contrast to the uncon-
ditionally stable Crank-Nicolson scheme; however, the stability constraint
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associated with nonlinearity (for example Az < ¢/wonalmas for the Kerr
term) is not so drastic as that for the description of diffraction with an
explicit scheme (Az < ko(Ar)?) [85].

4.2.3 Inclusion of dispersion, space-time focusing and
self-steepening

For a pulse, we need to introduce one more dimension, the temporal coordi-
nate, discretized as t; = tg + [At. By working in the corresponding spectral
domain w; = wy + [ Aw, it is actually possible to extend the previous numer-
ical scheme easily so as to include simultaneously the effects of dispersion,
space-time focusing and self-steepening. Note that in this section, the in-
dex [ will refer to either discrete times or discrete frequencies, depending on
whether the quantity we consider belongs to the temporal or the spectral
domain. Equation 4.1 rewritten in the spectral domain reads:

08 i . e
+ o | (T* Nicerr(€) + TNNLL(E) + Npraoma(p, )] . (4.38)

Let w;, K;, D; and T} denote wg + [Aw, I@(wl), @(wl) and T(wl), respec-
tively.

The numerical scheme extending Eq.4.35 and corresponding to Eq.4.38
reads:

. . 5 . .
Erft - B = z;l(AjE;le + AEY) +

dl n—+1 n 3 T 1 n—1
+ig (BJ + Ejy) + 5 Njy = 5N, (4.39)
where
) A
K 2(Ar)2K;
AzD
d = % (4.41)
!
jT,Ll = N(E;thp?,l) =
koAz

IC {ZA}ZNKBH(EZZ) + jleNLL(E;fl) + NPlasma(EZla p;tl) }(442)
1

The solution to equation (4.39) represents one step along the propagation
direction and reads as:
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3 1.
N5 = 5N g (4.43)

BN = (L) LB+
where L_; =1 — i((gl/Q)Aj —i(d;/2), Ly, =1+ Z'((Sl/2)Aj + 1(d;/2). With
respect to previous expressions of L_ and L., the matrices L_; and L ;
are different only by the frequency dependence of §; terms issued from space
time focusing and by an additional term d; on the diagonal, issued from
dispersion. As for L_ and L, the matrices L_; and L ; operate on vectors
representing transverse profiles (described by index j) of the Fourier compo-
nents EAJ-,Z for the envelope, corresponding to the fixed frequency wy; in other
words, Eq.4.43 allows us to apply the standard Crank-Nicolson scheme to
each frequency component [ of the envelope spectrum, thus performing one
step from E7, at distance n to E]";rl at distance n + 1. This step must be
inserted within a loop on frequencies (1).

Depending on the need to save either memory or simulation time, matri-
ces L_ and L, ; may be either precomputed (to minimize simulation time,
in which case the additional amount of memory used corresponds to the size
of a 14x N * N, table of real numbers, seven diagonals of real numbers being
needed to describe L_; and L ;) or recomputed at each step (to minimize
memory usage). In the second option, step 2 of the scheme is simplified since
only the minimal set of frequency dependent tables required to reconstruct
L_; and Ly ; in step 4 must be precomputed. The changes in steps 1 to 4

read:

e 1- definition of the initial data, laser and medium parameter; in partic-
ular everything needed to properly define the dispersion relation in the
medium, Raman-Kerr parameters, ionization rates, etc.

e 2- definition of grids and quantities useful for the propagation over one
step but which are z invariant.

— r-grid: r; = jAr, for j =0,--- ,N|_

— w-grid: wy =wo + (I — N, /2)27 /N, At, for L =1,--- | N,

— calculation and storage of the one dimensional tables: l@l, D, and Tl,
T2, dj, 6

e 3- definition of the initial field, e.g., for Gaussian profiles of the beam
and pulse

2 42 Fer2
E(r,t,z=0) =& exp (_r L —iC’t2>

E;'),l = S(Tj,tl, Z = 0)

e 4- loop on propagation steps with diagnostics each M steps:
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outer loop:

k=0,...,Kmaz
inner loop:
m=1,...,M
n=kM+m
. n—1 .
calculate electron density p;l (solve N) o.d.e.s (4.29) j=0,--- ,N )
calculate Raman-Kerr term Q?_?l = Qi(rj,t;,2n—1) (solve N o.d.ess (4.44) j=0,---,N )
calculate and store tables: :
—1 —1 — )
Nkerr(E} 1), NNLL(E} ), NPlasma (B} b (double loop j = 0,--- , N ;l=1,---,Ny)
Fourier transform the above tables and E"71 as well (any FFT routine)
calculate and store table N" ! from Eq. 4 42 (multiplication by T;/K; or le/)él and sum)
loop on frequencies
I=1,---,Ny
calculate L+)l, L_, (tridiagonal complex matrices)
calculateL_ (matrix inversion)
calculate Vn 1= =1L, lE" (projuct matrix-vector)
add S = Vn_1 + (SN" — N;”l_2)/2 (sum of vectors)
E; = Lilsjnlil (product matrix-vector)

end loop on frequencies (1)
inverse Fourier transform E7 T E]'L,L
store E '
perform type 1 diagnostics
end inner loop (m)
perform type 2 diagnostics
end outer loop (k)

Step 4 still constitutes the bulk of the scheme. It is evident that efficiency of
the code is enhanced if all unnecessarily repetitive calculations are avoided.
These concern loops including multiplications by factors which do not vary
with the loop index. For example it is clear that a single table must represent
the quantity koAz77/K; in front of the nonlinear Kerr term in (4.42) so that
the calculation of the first term in N ! needs multiplication by only one
factor, although we have kept all for clarlty Constant factors can also usually
be removed via renormalization of the discretized equations. As a general
rule, the efficiency of a code must be optimized by a careful count of all
operations appearing in inbricated loops and an attempt to minimize them.
For example, all matrix-vector operations performed on with tridiagonal
matrices must be implemented so as to avoid unnecessary multiplication
and sum of zeros. This can be achieved by using compact matrix storage for
the non-nil diagonals only, as discussed in [85].

4.2.4 Calculation of the Raman-Kerr and plasma contributions

The inclusion in the numerical scheme of the Raman-Kerr contribution is
formally equivalent to that of the plasma. Thus we limit the analysis to the
Raman-Kerr term. We indicate two possibilities to achieve this task.

e 1- Resolution of an ordinary differential equation: Assuming that the en-
velope &£(r,t, z) is known at a given propagation distance z, both the
electron density p(r,t, z) and the Raman-Kerr contribution Q;(r,t,z) =
ffoo Roexp[—I'(t—7)]sinfwgr(t —7)]|E(r, 7, 2)|2dT are solutions to a non-
homogeneous o.d.e. that involves £(r,t,2) as a source term. The tem-
poral profiles p(r,t,z) and Q;(r,t,z) are indeed obtained for each fixed
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spatial coordinate (r, z) by solving Eq.4.29 for p with boundary condition
p(—0) = po K par and Eq.4.44:

Qi Qi
o T 5
for @; with boundary conditions 9Q;/0t(—oc0) = 0 and Q;(—oc) = 0.
These tasks can be done by any o.d.e. solver based on, e.g., the Runge-
Kutta scheme [85].
e 2 - Direct resolution. An explicit formulation satisfying Eq.4.44 exists
for the Raman-Kerr response (the electron density, solution to Eq.4.29
admits a similar and simpler explicit formulation):

+ (WEHT?)Qi = (Wi + I)|E(r t,2)7,  (4.44)

Qi(r,t,z) = /_ Roexp[—I'(t — 7)]sinfwgr(t — 7)]|E(r, T, z)]sz (4.45)

which can be rewritten as the imaginary part of

t
Qrt,2) = Ry ferient [

—00

e TTWRT | E(r, T, z)\ng} (4.46)

A numerical scheme to compute Eq.4.46 is obtained by using a trape-
zoidal evaluation of the integral term:

Q(r,t+ At, z) = e(_FHwR)AtQ(T, t,z) +
% |E(rt + At, 2) 2 4+ TTH R A g (1 ¢ z)ﬂ (4.47)

Discretization of this scheme leads to an expression allowing the cal-
culation of the temporal profiles for the complex Raman-Kerr response
Q(r,t, z) at each fixed spatial position (r, z).

I At s
i = {0+ B P+ TP (s

from which Q;(r,t,z) = Im(Q7,) is obtained. Scheme (4.48) must be
inserted within an outer loop on j (transverse coordinate) and an inner
loop on [ (time).

4.2.5 Nonuniform grids

When dealing with phenomena such as filamentation for which beams shrink
in the transverse diffraction plane and remain confined in a tiny part of
the numerical box, one might wish to increase locally the resolution while
avoiding an excessive increase of the number of grid points (and so, of the
simulation time). A solution to this issue consists in using non uniform
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grids with a large number of points in the regions where the beam or pulse
becomes intense, narrow or short, and a more tenuous density of grid points
in less intense regions. As an example, we may consider self-focusing of a
cylindrically symmetric, initially collimated beam. Typically, an input beam
of full width at half maximum of a few hundreds of microns will self-focus in a
transparent solid down to a few microns so that close to the axis r = 0, a fine
discretization is necessary to proceed the simulation beyond the nonlinear
focus.

In this case, it is convenient to use a mapping between the physical space
(say with coordinate r, but the scheme can be applied to all coordinates)
and the computational space (with coordinate R). The physical and the
computational coordinates are linked by a relation:

r= f(R),
where f denotes the mapping function. The propagation equation to be
solved involves partial derivatives with respect to physical coordinates. Be-
low, we give the corresponding terms as functions of the computational
coordinates and an example of mapping function and its derivatives. The
first and second order derivatives with respect to r read:
o) 1 90 0? 1 < o> f o )

or  f(R)OR’ 02  f2(R) \ORZ f OR

and the transverse Laplacian operator which describes diffraction then reads
as

62 10 82 0 . 1
o I o= F(R)W +G(R)ﬁ with  F(R) = 72(R)
1 f//
and G(R) = <ff' - f/g)

In order to use non-uniform grids with the same numerical schemes as
described above, the computational axis R can be discretized by using a
uniform grid R; = jAR and the only change in the scheme then concerns
the coefficients in the tridiagonal matrices A;, L_ and L, which must take
account of F; = F'(R;), G; = G(R;), u; = Fj; — G; and vj = F; + Gj:

« % 0 - 0 0 Ey

up —2F, v; 0 0 0 EY

0 e T 0 0 0 :

n

AEN =10 0 wu —2F v 0 0 Ej

o 0 0 . 0 :

0 0 UN, -1 _2FNJ_71 UN,| -1

0

0 uN, —2FN, Eﬁu
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Finally, a convenient mapping function must be chosen. For the above men-
tioned example of self-focusing followed by filamentation, we found it con-
venient to use the mapping

(R/wy — 1+ exp(—3R/Rpmaz))
Rinaa/wo — 1 + exp(—3)

f(R) = Tmax

which concentrates all the more the grid points around r = 0 as Ruz
approaches 3wyg.

4.2.6 Boundary conditions

In order to avoid artifacts due to reflections at the boundaries of the numer-
ical box, we added boundary layers close to the boundaries where the fields
must vanish. These boundary layers are designed to either act as 'sponges’
and absorb outgoing fields, or as ’perfectly matched layers’ reducing the
reflection coefficient ideally to zero. The reader is referred to Ref. [86] for
theoretical and numerical details concerning perfectly matched layers. The
use of this type of boundary condition works quite well for simulations of
beam propagation, filaments and X-waves based on Eq.4.1.

As for boundary layers of the sponge type, the idea is to model a physical
absorption process described by:

gi = —20h(r)€&,

where 20 denotes the maximum absorption coefficient and h(r), a function
increasing from zero to one over the width of the boundary layer rqg <
r < Tmag; thus absorption occurs only in the boundary layer; for example
h(r) = (r —70)?/("maz — 10)? for r > 79 and h(r) = 0 otherwise. Let jo
denote the first integer such that h(rj,) > 0. In order to mimic absorbing
boundary layers in the above schemes, it is sufficient to modify the diagonals
of Ly and L_ for terms jo < j < N, as: diag(L4) — diag(Ly) — oh; and
diag(L_) — diag(L_) 4+ oh; where hj = h(r;). The last line j = N must
be kept unchanged as it corresponds to the condition at the bouundary of
the numerical box.

4.2.7 Diagnostics

Simulations in 241 dimensions (i.e, r, ¢ and z) involve a large volume of
data. It is neither possible, nor useful, to record the complex field in all
dimensions at each propagation step. This is the reason why we defined two
types of diagnostics:

type 1: diagnostics that can been applied at each propagation step to find
a well defined quantity, the storage of which costs a small amount of memory,
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e.g. peak intensity Iq.(z = 20), fluence distribution F(r, z = zp), full-width
at half maximum of the fluence Dpw (2 = 20), on-axis temporal profile
I(r =0,t,z = 2p), etc

type 2: diagnostics which use a large amount of memory such as fields
depending on all coordinates of the numerical grids at a given distance, e.g.,
I(rt, 2p), p(r,t, 2p), far-fields I(k,,w, z = 2p), etc.

As indicated in the schemes above, the code performs type 1 diagnostics
at each propagation step and type 2 diagnostics each M propagation steps.
For each type of diagnostics, the results are saved in files for postprocessing
and visualization.

4.2.8 Tests

Before performing any simulation in a physical situation of interest, a test of
the tool was made so as to check the implementation of each physical effect
separately with respect to known analytical solutions. In particular, provided
the resolution is sufficient, the above schemes were checked to reproduce
correctly the following phenomena:

e Diffraction of a Gaussian beam &(r, 2z = 0) = & exp(—r?/wd):

wo 2 Ckor?
o) P T harE)

w(z) = woy/1 + 22/23 (4.50)

F(z) = 2(1422/2%) (4.51)

E(r,2) = & (4.49)

where

with zg = kow%/Q.

e (De)focusing of a Gaussian beam by a lens: £(r, z = 0) = &y exp(—r?/wi—
ikor?/2f): The envelope £(r, z) is given be Eq.4.49, but expressions for
w(z) and F(z) are changed into:

2 d
w(z) :w01/1+z—2 —22—2 (4.52)
0 0

F(z) = (2= d)(1+ 2}/(z — d)*) (4.53)

with zp = k:owj%/Q. The waist at focus is wy = wo//1+ 23/f? and is
obtained at z = d = zy20/f.
e Dispersion of a Gaussian pulse E(t,z = 0) = & exp(—tQ/tZ):

2
E(t,z) =& t—pex !

25 G, (4.54)
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where

7(2) = tp\ /14 22 /22 (4.55)

Cp(z) = —t%z(l —idzg/z?) (4.56)

where zq = t3/2k(.
e Compression of a chirped Gaussian pulse £(t,z = 0) = & exp(—t2/ tf, —

iCt?): The envelope £(t, z) reads as Eq.4.54 but the pulse duration and
chirp are expressed as

2

(2) = tp\/<1 + Ct22>2 + (4.57)

P 2d z;
— ~d
(2 = zm) (14 23/ (2 — 2m)?)

Cp(z) (4.58)
where zg = t§/2k:6’ . For negative chirps, the minimum pulse duration
tm = tp/\/1+ C?t} is reached at 2z, = |Clzq/(1+ C?t}).

e Self-focusing of a beam with power above the critical power for self-

focusing, for an instantaneous optical Kerr effect. For a collimated Gaus-
sian beam of power P;,, the self-focusing (collapse) distance follows [16].

0.3672
V[(Pn/Per)t/2 — 0.852]2 — 0.0219

(4.59)

Ze —

e Test of nonlinear losses with a plane wave. The intensity of the plane
wave should follow:
Iy

e (14 (K = 1)Bg I 2) /K-

(4.60)

Test of spectral broadening by self phase modulation

Test of ionization and the Raman-Kerr response by comparison of the di-

rect method with the Runge-Kutta integration of o.d.e.s (4.29) or (4.44).
e Test of the stationarity of X-waves

For more complicated cases modeling a physical situation, the reliability
of the results must be checked by doubling the numbers of steps in space r
and time ¢ while halving the respective step-sizes Ar and At. The propaga-
tion step Az must also be decreased until no significant change in the results
is observed. Finally, trustworthy results are also not significantly affected by
an increase of the size of the numerical boxes (at constant resolution).






5

Ultrashort laser pulse filamentation and conical
waves

Maybe the most surprising and incredible feature of laser pulser filamenta-
tion in Kerr media is the drastic reshaping of the pulse. Many models have
been proposed to explain this reshaping. A brief overview of some of these
was given in the first chapter but here we will inverstigate in some depth
the implications and predictions of the X wave model. The assumption ly-
ing at the basis of this model is that the intensity and spectral reshaping
of the pulse is driven by nonlinear interactions that will redistribute the en-
ergy of the pulse. This energy redistribution may be interpreted as a spon-
taneous evolution of the laser pulse toward some stationary state so that
further propagation will not strongly affect it. Viewed from a slightly differ-
ent perspective, spatial and temporal self-phase modulation will increase the
spectrum and distort the pulse but all spectral components that are not sta-
tionary will be lost (due to dispersion and diffraction) during long distance
propagation. This idea may be better appreciated through a comparison
with standard Gaussian pulse optics. Table 5.1 is clearly not meant by any

Table 5.1. Comparison between standard laser optics based on Gaussian
pulses and filament optics interpreted in terms of conical wave packets.

Standard LASER physics| Filament physics
Stationary state Gaussian pulse Conical wave
coupling r and t are decoupled | r and t are coupled
approximation | pulse is rarely a true |the pulse is probably
Gaussian but the never a true conical
approximation works wave
description Gaussian pulses are Conical waves and
easily treated in both filaments are best
(r,t) and (6, ) treated in (6, \)
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means to be a complete or exhaustive overview of standard laser optics but
simply a loose summary of some of the assumptions that lie at the basis of
everyday reasoning in the lab. Our laser pulse will be generated by some
laser, usually a quite complicated laser, that will reshape the light within
the cavity in both spectrum (time) and angles (space) and the final result is
usually a pulse that has a Gaussian-like profile both in time and space. Ex-
ceptions of course do exist, some lasers have a temporal profile that is closer
to a sech(t) function, but this is not the point. The point is that we then treat
and model propagation of this pulse as if it were a Gaussian pulse, ignoring
the fact that we do not have infinitely extending tails or some extra noise or
amplitude modulations. Yet the approximation works very well and leads, in
most cases, to a deep understanding of the physics and gives the possibility
to make precise predictions of what may happen in different circumstances.
With filaments we may highlight similar features. It has been shown that an
optical pulse in the presence of a Kerr nonlinearity and normal group veloc-
ity dispersion may assume a stationary state, the nonlinear X wave (i.e. a
conical wave packet) [59]. So, in a similar fashion to what happens in a laser
cavity, we may expect the input pulse to spontaneously evolve toward a sta-
tionary state and that, under these conditions, we may be able to describe
the pulse propagation as if it where a conical wave. In this chapter we shall
first show that the (6, ) spectra of ultrashort laser pulse filaments may be
precisely described and reproduced using stationary conical wave 6(\) rela-
tions (e.g. eqs. 2.12,2.13). In the normal group velocity dispersion regime the
measured spectra bear evidence of the spontaneous formation of X waves,
and passing into the anomalous group velocity dispersion regime the spectra
change accordingly and show evidence of O wave and Fish wave formation.
We shall then procede to treat the filament pulses in normal dispersion as X
waves: by approximating the conical wave 6()\) relation to second order in
dispersion it is possible to analytically derive a series of results that lead to
the conclusion that pulse splitting, an ever-present effect in filamentation,
is the result of a phase matched parametric interaction between the input
pump and the spontaneous X waves. The group velocity of the split X waves
(and therefore their particular shape) depends directly on the pump peak
intensity. This analysis will also open the question as to whether the single
X wave is the result of a phase matched nonlinear process (or in other words,
modulational instability) and the compatibility of such a process with the
requirement of stationarity, which the conical waves obey.

5.1 Evidence of X wave formation in filament spectra

We start our analysis by studying filament formation in the normal group
velocity dispersion (GVD) regime in condensed media. There are various rea-
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Fig. 5.1. Measured filament spectra for increasing input energy from (a)
0.5 uJ, (b), (c) and (d) from 1.3 to 1.5 uJ, (e) 2 uJ and (f) 5 pJ.

sons for this choice but the main motivation lies in the fact that filaments
in condensed media such as water or fused silica occur in the em range, and
not tens of meters as in gases. Furthermore these materials are transpar-
ent at readily available wavelengths (in our case 527 nm) for femtosecond
laser sources and at these wavelengths most condensed media exhibit nor-
mal GVD. The experimental layout used for theses experiments is shown in
Fig.1.7 where the Kerr medium is a glass cell filled with pure water. The
input laser pulse is generated by a Nd:glass laser system (Twinkle, Light
Conversion Ltd., Vilnius, Lithuania) that operates at a fundamental wave-
length of 1055 nm with pulse of 1 ps duration, FWHM. Frequency doubling
with a particular configuration studied so as to also compress the pulse gives
us pulses at 527 nm with a duration FWHM of 200 fs and energy in the 4 mJ
range. This pulse is then strongly attenuated and the final energy is varied
from 1 to 6 uJ using a polarization rotator in combination either with a
polarization selective mirror or a Glan-Taylor polarizing cube. This range of
energies in combination with a focusing f = 50 cm (so that the collimated
beam diameter at the sample input facet is of the order of ~ 100 um) gives
stable, single filaments in 2-4 cm of water. Lower energies do not give rise
to filaments and higher energies lead to local breakdown inside the sample
or to multiple filamentation, all effects that give confused and non optimal
spectra. Fig.5.1 shows the measured (6, \) with increasing input energy. In
(a) we have the input Gaussian pulse. Increasing the energy so that the
pulse is above the self-focusing critical power without actually forming a
filament in the 3 cm water sample we observe first a large increase in the



104 5 Ultrashort laser pulse filamentation and conical waves

spatial (i.e. angular) spectrum (b) followed by a strong space-time reshaping
(c). This reshaping is related to both self-focusing (leading to an increase
of the spatial frequencies) and self-phase modulation (leading to an increase
in the temporal spectrum). These two effects occur simultaneously and are
tightly connected to each other so that at different angles we observe differ-
ent spectra. This is the spectral counterpart of spatiotemporal coupling. The
spectrum in (c) is taken just before the nonlinear focus of the self-focusing
pulse: this propagation regime is characterized not only by a spatial but
also by a temporal compression of the input pulse (see the first four graphs
in Fig.1.8). This may seem in contrast with the fact that ultrashort pulses
in a dispersive medium should actually spread in time, yet the temporal
compression is the result of this initial space-time focusing stage: the most
intense part of the pulse, located at the very center of the Gaussian profile,
will suffer the strongest reshaping. It will self-focus more efficiently than the
rest of the surrounding pulse, increasing further the peak intensity. Measur-
ing the FWHM of this intensity peak will therefore result in a temporally
compressed pulse that is, however, surrounded by a large background that
has not yet focused. Increasing the pump energy leads, with a very abrupt
transition, to the formation of a relatively stable (from shot to shot and for
increasing energy) structure in the spectrum dominated by two features: a
marked conical emission (spectrum at 6 # 0 rads) and an axial (6 ~ 0 rads)
emission. The axial emission in the case of water is often somewhat weaker
than that observed in other media, for example fused silica (see for example
Fig.3.8 or 3.18), but still shows the same common features. Increasing even
further the input energy gives similar features in the spectrum although with
some additional features such as multiple split conical emission tails.

At this point we may make use of the technique described in detail in
chapter three and derive the group velocities of the pulses associated to the
measured conical emission tails.

Analyzing the complete series of spectra summarized in Fig.5.1 gives the
group velocity values shown in Fig.5.2(a). The circles give the averaged (over
all frequencies) group velocity and the error bars indicate the mean standard
deviation. The standard deviations are always of the order of 0.1% indicat-
ing that the group velocity is indeed practically constant. There is only a
single pump energy value (1.4 uJ) for which the error bars are relatively
large (~ 2%), indicating that here the group velocity is not so constant. We
shall return to this issue later on when considering the pulse dynamics at the
nonlinear focus and for the moment we shall concentrate on the propagation
after this point. Fig.5.2(a) not only tells us that the spectra are well repre-
sented by stationary conical waves (the small error bars indicate that k. is a
linear function of w) but it also tells us that the pump pulse is splitting into
two pulses propagating with opposite group velocities (in the moving frame
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Fig. 5.2. Group velocity, derived from the spectra shown in Fig.5.1 of the
spontaneously formed X waves with varying input energy (a) and versus the
propagation distance after the nonlinear focus estimated using Eq.1.29 (b)

of the input pulse). The blue shifted conical emission tails correspond to a
superluminal pulse, the red-shifted tails to a subluminal pulse. So the conical
emission is intimately connected to the intensity peak splitting that occurs
during filamentation. This is a natural consequence of the spontaneous for-
mation of conical waves: the conical emission or off-axis propagating waves
create an interference pattern that is seen as an intensity peak that travels
at group velocity that depends not on the pulse carrier frequency (as in
standard Gaussian pulses) but on the particular pulse shape (i.e. through
the o parameter in eqgs. 2.12,2.13). It is possible to graph the same data as
a function of the propagation distance after the nonlinear focus. The overall
sample length is fixed at 3 cm but increasing the input energy leads to a shift
of the nonlinear focus toward the laser as described by Eq.1.29. Therefore
increasing the pump energy has a very similar effect to that of increasing the
effective filament propagation length inside the Kerr medium. The nonlinear
focus is defined as the point at which the pulse reaches its highest intensity
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Fig. 5.3. Left axis: Ratio between the root-mean-squared deviations of the
measured near field profiles with respect to Townes and Gaussian profiles.
Right axis: peak intensity in arbitrary units. The inset shows the measured
near field profile at L=3 cm.

and therefore is most likely to give the largest variation in the pulse spec-
trum. We therefore estimate the position of the nonlinear focus to coincide
with the 3 ¢cm sample length for an input energy of £ = 1.45 pJ and then
evaluate the filament length that will vary proportionally to 1/v/E. The
result is shown in Fig.5.2(b) that highlights two different regimes:

1. just after the nonlinear focus, characterized by a strong pulse reshaping
process, and

2. far from the nonlinear focus, characterized by a smoother propagation
during which the spectrum hardly changes indicating a relaxation toward
linear propagation.

We have not yet mentioned what happens just before the nonlinear fo-
cus. This issue has been studied in detail for example by Moll et al.[24]
who showed that an input Gaussian pulse will self-focus and spontaneously
transform into what is known as the Townes profile. This profile was first re-
ported in Ref.[6] and was discovered as the stationary state of the nonlinear
Schrodinger equation and indeed was proposed ([6]) as the possible candi-
date to explain the apparent stationary-like propagation of optical filaments.
However it is now known that the Townes profile is stationary but also un-
stable against perturbations. This means that the slightest perturbation will
either push the pulse toward catastrophic collapse (eventually arrested by
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Fig. 5.4. Experimentally measured X wave spectrum generated in a 10 m
filament in air.

nonlinear saturating mechanisms) or toward diffraction. Nevertheless Moll
et al. have shown that the initial spatial contraction stage of the input pulse
is dominated by a spatial reshaping into the Townes profile. This may also
be confirmed by simply measuring the near-field fluence profiles of filaments
versus propagation distance. One may try to fit the measured profiles with
Gaussian and Townes profiles and then compare the “goodness” of these
fits, for example by taking the ratio of the root mean square deviation (or
standard deviation) of the data points from the fitting curve for the Townes
and Gaussian profiles. A value below 1 indicates a good fit to the Townes
profiles, a large value indicates a good fit to the Gaussian curve. Fig.5.3
shows such a result obtained with a 200 fs, 527 nm focused into water. The
great advantage of using water is that by properly building the cell we can
easily change the propagation length, even in very small steps. As can be
seen, the RMS ratio indicated in the graph starts off very large, indicating
a good fit with a Gaussian profile as expected as this is how we chose our
input pulse. Propagation inside the Kerr medium leads to a reshaping into
Townes profile indicated by the RMS ratio that falls below 1. At the same
time the pulse intensity also reaches its maximum value, indicating that we
are at the nonlinear focus. After this point the RMS ratio increases again
however this does not actually correspond to retransformation back into a
Gaussian pulse but rather into a pulse shape that is neither Gaussian nor
Townes. The inset in Fig.5.3 shows a near-field profile taken for L=3 cm and
clearly shows how the central peak has developed side wings thus explaining
the poor fit with Gaussian or Townes profiles. In other words the instability
of the pulse unavoidably leads to a reshaping that we may tentatively asso-
ciate to the spectral reshaping observed at the nonlinear focus, i.e. precisely
to the point at which the catastrophic collapse is blocked.

All this leads us to a loose picture of the filamentation dynamics in which the
input pulse self focuses toward a Townes state. The instability of this state
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manifests itself at the nonlinear focus and, after an initial but very quickly
evolving process, leads to the spontaneous formation of conical waves that
split in time and relax toward a linear propagation regime. An important
feature of these results is the strong pulse splitting that seems to occur in
practically all media and under a broad range of input conditions indicating
that is a very robust and general feature.

Before going into more detail in the pulse splitting dynamics it is interesting
to note that we may verify that the spectra correspond to conical waves
by fitting directly the maximum intensity profiles using the two parameter
curves described by egs. 2.12,2.13. In certain situations it is possible to sim-
plify further this analysis by fitting with a curve that actually has no free
parameters [87] . Indeed if we consider the Taylor expansion of the k(w) re-
lation (Eq 2.15) some materials and for some wavelength ranges satisfy the
conditions 1/6k{(w — wp)? << 1/2k{(w — wp)? and 1/2k{(w — wp)? > 0. In
this case the conical wave spectrum will exhibit hyperbolic X-like tails, cor-
responding to what are usually referred to as X waves and will be symmetric.
This, for example, is precisely the case for water with a pump wavelength of
527 nm and over a relatively large 100-200 nm spectral range. Under such
conditions the X waves are well described by Eq.2.16: asymptotically, i.e.
for large frequency shifts 2 and angles, this relation may be approximated
by k1 = kok” (2. Therefore in order to check if the spectrum corresponds
to that of an X wave it is sufficient to verify that the X tail &, (far from
the pulse center) depends linearly on frequency and with a slope that is
determined by the second order dispersion. This method is particularly con-
venient (when applicable) due to the fact that often the central region is
saturated and the spectral details are not visible. As an example consider
the spectrum shown in fig.5.1(e): the slope of the X tails is 1.01 £ 0.1 fs/um
which is in excellent agreement with the expected slope (for an X wave), 0.94
fs/pm. As a further example consider fig.5.4. This shows an experimentally
measured spectrum generated from a 10 m long filament in air. The filament
was first reflected from a wedged glass plate so as to reduce its intensity and
then sent into a home made imaging spectrometer. The slope of the tails is
found to be 1.5 £ 0.2 fs/urad which is very close to the value 1.68 fs/urad
predicted using parameters for air given in ref.[88].

5.2 Normal, anomalous and zero group velocity dispersion

Most filamentation experiments are conducted in the normal group velocity
dispersion regime. This is due simply to the large availability of ultrashort
laser pulse in the visible or near infrared range and to the fact that experi-
ments are usually carried out in highly transparent materials, a feature that
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Fig. 5.5. Experimentally measured filament spectra generated with a 200
fs input pulse in water centered at 1055 nm. Input energy is F = 15 uJ.

is usually (but not always) connected to the presence of normal GVD. But
of course one may ask how the spectra and conical waves are modified when
passing into the anomalous dispersion regime. We have seen in chapter 2
that in anomalous GVD the stationary conical wave takes the form of the
O wave and close to the zero GVD point it takes the form of the Fish wave.
Experimentally this may be verified by measuring the spectra for various
wavelengths [89]. The input wavelength was tuned from the near UV region
into the near IR: in water the zero GVD wavelength is 1000 nm and a clear
transition from X shaped spectra toward O shaped spectra is observed thus
confirming the prediction based on the hypothesis that the filamentation
process is characterized by the spontaneous formation of conical waves.

At this point one may object that the same dependence may be assumed
looking at the modulational instability profiles predicted for a plane wave
in the presence of Kerr nonlinearity. Fig.1.3 shows precisely a growth in the
(0, A\) spectrum that is X shaped in normal GVD and O shaped in anomalous
GVD [53]. However there are important differences between the two models,
differences that finally favor the conical wave model. Indeed when we speak
of modulational instability we are referring to an energy transfer from the
high intensity pump wave to the unstable modes. This energy transfer oc-
curs through a phase-matched nonlinear interaction (Four Wave Mixing for
Kerr nonlinearity) which in turn implies that only even terms (k”, k", ...)
will play a role in defining the final shape of the spectrum. All odd terms (£’,
K" ...) will cancel out in the energy and momentum conservation relations
resulting in perfectly symmetric spectra regardless of the pump wavelength
[90, 91]. Yet we know that close to the zero GVD wavelength third order
dispersion becomes important and may dominate the dispersion landscape,
severely distorting the conical wave spectrum that assumes half-X or Fish
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Fig. 5.6. Experimentally measured filament spectra generated with a 200
fs input pulse in fused silica centered at 1600 nm. Input energy is £ = 15
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like profiles, as shown in chapter 2. Fig.5.5 shows an experimentally mea-
sured spectrum produced by a filament in a 3 cm long water cell with a pump
pulse of 200 fs, 1055 nm central wavelength and 15 pJ input energy [53].
This input energy is rather large if compared to measurements performed
to similar experiments at 527 nm. Indeed water exhibits a very strong linear
absorption peak around 1100-1200 nm that is therefore partly compensated
by the large input energy. The spectrum clearly shows a strongly asymmet-
ric shape with an O-like feature in the anomalous dispersion region (above
1000 nm) and a hyperbolic tail near 800 nm in the normal dispersion region.
These features constitute what we call the “Fish” spectrum.

Fish waves and soliton fission in optical fibers.

It is important to realize that the features in the Fish spectrum do not corre-
spond to distinct pulses in the near field but rather are the manifestation of a
single pulse. This may be checked for example by performing numerical sim-
ulations that reproduce the experimental spectrum and by then performing
a Gated Angular Spectrum characterization: although the near field profile
is quite complicated, in correspondence to the temporal slice at the main
intensity peak the spectrum shows the full Fish shape (i.e. hyperbolic tail
and O-like head), i.e. the full Fish spectrum may be identified with a single
peak in the near field (the solid white line in the figure shows the best fit
obtained using the conical wave relation that matches the overall features).
This finding is in strong contrast with similar features observed in opti-
cal fibers [78]. In fibers extended supercontinuum generation is obtained by
pumping close to the zero-GVD wavelength. This process is characterized
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by soliton fission (in the anomalous GVD region) and by the formation of
a blue-shifted dispersion wave. Leaving aside the specific names used for
fibers (e.g. solitons, dispersion waves) or in bulk (Fish waves) the physics
appear to be quite similar: in both cases pulse splitting is observed in the
anomalous GVD region along with a strong energy transfer to a specific
blue-shifted wavelength in the normal GVD region. This similarity becomes
even stronger if we note that the equation describing the resonant transfer of
energy from the soliton at frequency ws, to the dispersive wave at frequency
Waw, 18 given by [78]

w — W,
Hdw 75 L AByp =0, (5.1)
gs

—B(waw) + Blws) +

where (3 is the effective fiber mode wave-vector, vy is the soliton group ve-
locity and the last term is a nonlinear correction to the soliton wave-vector.
This equation may be reinterpreted as the 1D version of the more gen-
eral Three-Wave-Mixing equation (Eq.1.35) or of the conical wave relation
(Eq.1.33), where the soliton plays the role of the pump pulse. In the full 3D
case the nonlinear correction term in Eq.5.1 may be neglected due to the fact
the wave-vectors are no longer constrained along the propagation direction
and are aligned along conical surfaces so that the nonlinear phase-shift will
not accumulate. In other words, what we identify as the blue-shifted tail of
a Fish wave is referred to as a dispersion wave in fiber physics. However this
is where we find a difference between the two cases: in the full 3D system the
conical nature of the wave-packets will sustain the existence of localized and
stationary peaks. Near the zero-GVD wavelength, the spectrum associated
to these peaks is constituted by the full Fish spectrum, i.e. a red-shifted O-
like feature with a blue-shifted hyperbolic tail. On the other hand, if we limit
the physical dimensions of the system to 1D as in a fiber then no conical-like
propagation is possible: a solitary red-shifted peak is still observed but this
is no longer stationary and splits into a series of first order solitons (soliton
fission). Furthermore the blue-shifted peak is no longer part of an extended
conical emission and therefore behaves simply as a dispersive wave and will
propagate with a delay with respect to the red-shifted solitons forming a
separate, temporally broadened pulse [78].

Fig.5.5 is relative to water but fig.5.6 shows the measured spectrum of a
filament generated in fused silica glass [53]. Zero GVD is close to 1290 nm
and the pump was chosen at 1600 nm, i.e. apparently well into the anoma-
lous dispersion region. However at these wavelengths for glass the condition
1/6k( (w — wo)? << 1/2kf(w — wp)? is not satisfied even for relatively small
frequency shifts. In any case it is clear from the measurement that the spec-
trum is reaching well into the normal GVD region and a clear Fish-shape
is observed. This confirms that our interpretation may be extended to any
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Fig. 5.7. Numerically simulated spectra of white noise amplified by a long
(200 fs) and wide (r = 1 mm) super-gaussian pump pulse in normal GVD
(a) and anomalous GVD (b). Independently of the pump frequency noise is
amplified along symmetric regions in the spectrum. Close to the zero GVD
frequency and with a short (20 fs) and small (r = 50 pm) pulse white noise
is amplified with an asymmetric Fish-like profile. The white lines are a guide
for the eye.

medium but is also highlights the fact that great care should be taken in
distinguishing between normal and anomalous GVD. More often than not
it is necessary to consider the full dispersion landscape and this is neither
normal nor anomalous. Overall we could conclude that X and O waves are
simply a partial manifestation (due to limited spectral bandwidth) of the
more general Fish waves.

Fish waves and Modulational Instability

We now compare the measured spectra and predictions based on the X wave
model with those given by modulational instability theory. Generally speak-
ing the energy redistribution leading to the formation of Fish waves occurs
through some kind of phase or nearly phase matched process so why are
the spectra not symmetric? The answer lies in the fact that modulational
instability analysis is valid only if performed on stationary states, which in
the case shown in Fig.1.3 are plane and monochromatic waves. Yet self fo-
cusing and in general filamentation leads to a very tightly focused intensity
peak, a condition that may be very far from the plane wave case so that
the amplified spectrum may be very different. In order to verify this we per-
formed numerical simulations based on the nonlinear Schrédinger equation.
The input beam was taken as a gaussian pulse with a 200 fs duration (that
may still be roughly considered as monochromatic) and with a radius of 1
mm (that may be considered as a plane wave). The peak intensity of this
pulse was chosen to be very high and was superimposed on a background
of low intensity, white (in frequency and angles) noise. Figures. 5.7(a) and
(b) show the spectrum after a few mm of propagation, a distance sufficient
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to start to amplify the white noise without inducing any significant dis-
tortion on the pump pulse. In normal GVD the noise is clearly amplified
along a hyperbolic-like symmetrical surface that then becomes elliptical in
anomalous GVD, exactly as predicted by modulational instability theory.
However fig.5.7(c) shows exactly the same simulation with a very short 20
fs and very small 7 = 50 pm pulse and the amplified noise clearly shows a
strongly asymmetric and Fish-like shape. This would apparently imply that
energy transfer from the pump pulse to the amplified spectral components
is occurring with a violation of the phase matching constraints. The tightly
focused pulse has a large spatial spectrum so that, although the longitudinal
components of the wave-vectors must satisfy momentum conservation, the
transverse components are allowed a certain indetermination Ak ~ 1/r. A
similar reasoning may be applied also to the energy conservation constraint.
In other words, it is the tight spatial and temporal localization of the pulse
at the nonlinear focus and within the filament that allows a departure from
strict phase-matching and the formation of asymmetric spectra that corre-
spond to stationary conical waves.

5.3 Pulse splitting and X wave formation

Filamentation is therefore characterized by a relaxation toward a stationary
or combination of stationary conical waves. What remains to be explained
is what determines the particular conical mode observed in the spectrum
and if there is any connection with pulse splitting. The principal candidate
for explaining the spectral reshaping and redistribution of energy within the
pulse is Four Wave Mixing. This is the lowest order nonlinear process that
will occur in a kerr medium and will certainly occur at the intensities reached
within the filament (of the order of TW/cm? in condensed media). Although
this may seem relatively obvious it is not so obvious how the Four Wave
Mixing process should be treated (or if it may be treated) analytically. The
standard approach based on a phase matching requirement between plane
and monochromatic waves will not give useful results: the phase matching
curves will be symmetric an essentially identical to the maximum gain curves
for modulational instability. An alternative is to treat the Four Wave Mixing
process bearing in mind that the generated wave modes are not plane waves
but rather X waves. In other words the phase matching condition should be
applied between two tightly localized pump waves with a signal and idler
X wave. In order to do this we may take the simplified conical relation
Eq.2.16. This equation may in turn be written in a slightly different form
that is slightly easier to treat analytically:

K1 (2) = [/ kok§(2 — 2)2 + 2kof5. (5.2)
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Fig. 5.8. (a) full circles give the measured (6, £2) maximum intensity distri-
bution for conical emission generated by 527 nm, 2 pJ, 200 fs laser pulse in 3
cm of water. (b) measured (6, \) spectrum using a low resolution grating so
as to capture a large spectral range in a single shot. The X tails originating
at 450 nm and 635 nm are clearly visible. (¢) numerical simulation showing
the same features as in (b).

2 and [ are free parameters: §2 is the X wave central frequency and (3 is a
correction to the wave-vector. Within the approximation of a symmetrically
(with respect to {2) excited X wave, the phase and group velocities are given
by [56]

_ wo + Q
1
’Ug = m (54)

Two X waves with opposite and equal group velocities in the moving ref-
erence frame of the input pulse will split with a group velocity mismatch
(GVM) given by

1 1 -
Vg Vg
where we have used
1 1
() = (5.6)

9T Wwot 2) Ky EKIQ

Phase matching is now imposed between the two degenerate localized pump
waves and the signal and idler X waves: energy conservation gives {2, = —2;
and momentum conservation gives 2k = ks + k; where the X wave signal
and idler X wave-vectors are given by ks; = k(wo + 2,) — Bsz The pump
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Fig. 5.9. Dotted curves and symbols show the 3 and GVM values obtained
from numerical simulations. Each point represents a separate simulation: the
peak intensity was controlled by varying the nonlinear absorption coefficient.
Solid lines show the predicted values using analytical relations, eqs.5.8 and
5.9.

wave-vector k = ko + Ak is corrected by a positive (in self focusing media)
nonlinear phase shift term Ak that accounts for the self induced nonlin-
ear phase shift. Although the pump is localized rendering a proper evalua-
tion of the nonlinear correction somewhat complicated we may tentatively
approximate this term taking the plane wave value Ak = wonol/2c. The
nonlinear correction is not included in the weak signal and idler X waves
due to the fact that the conical nature of the X waves implies that energy
does not flow axially but rather along a conical surface therefore preventing
pump-induced phase accumulation to take place. Using the Taylor expan-
sion k(wo + 254) = ko + kb Qs + ki ng /2 the phase matching constraint
leads to

Bs + Bi — kg 022, = —2Ak. (5.7)

Recalling that 5 and 2 are free parameters we realize that there are an
infinite number of X waves that satisfy this relation. Among all possible
couples we should however choose those whose spectra cross the pump spec-
trum, located around {2 = 0, K| = 0 as these are the most energetically
favored since they will not need to grow from noise but from the more effec-
tive pump self-phase modulation. This condition together with Eq.5.2 leads
to Bs,i = —kj sz /2. We therefore finally find the conditions for the X wave
parameters:



116 5 Ultrashort laser pulse filamentation and conical waves

_ wonal
Bs,i = o (5.8)

_ wongf
s =E\ ——. 5.9
e (5.9)

So the signal and idler X wave frequency shifts will be symmetrical with
respect to the pump and will have frequency gaps given by 2|2 ;|. Equation
5.9 also predicts a dependence of the conical emission structure on the pump
peak intensity I. We have already seen that when third order and higher
terms are negligible in the material dispersion relation the conical emission
spectrum will have a constant slope dictated by k(. The remaining spectral
features such as the curvature close to the pump, the presence of a frequency
gap and the entity of this gap are given by Eq.5.9.

Fig.5.8(a) shows the (6, (2) points of maximum spectral intensity for the
spectrum shown in Fig.5.1(e). The solid and dashed lines give the best fits
obtained with the X wave relation Eq.5.2 and parameters 35 = 3; = —2.2
mm ™! and 25; = +0.33 fs~!. As predicted by the simple analytical treat-
ment given above we do indeed find that the signal and idler X waves have
equal 3 and opposite 2. These fits and the theory predict the existence
of conical emission tails at relatively large frequency shifts. Repeating the
measurements with a low resolution grating so as to acquire the spectrum
over a large spectral range while maintaining the possibility to do this in
single shot, such features may be indeed be observed. Fig.5.8(b) and (c)
show an experimental spectrum and a numerically calculated profile that
clearly show the expected X wave features, thus confirming the validity of
this approach.

Eqgs.5.8 and 5.9 also predict a clear dependence on the peak intensity reached
within the filament. The solid lines shown in Fig.5.9 give the predicted 3
and GVM= 2k{/|$2, ;| = 2+/k{jwonaI /c with ng = 1.6 x 10716 cm? /W. These
curves allows us to derive a peak intensity value within the measured fila-
ment of ~ 1.2 TW/cm?. This is in close agreement with the peak intensities
found in numerical simulations. More importantly, we may verify the model
by comparing the analytical relations with those found in numerical simu-
lations. The great advantage of numerical simulations is that we may easily
track not only the output spectrum but also the peak intensity within the
filament. We therefore performed a series of simulations all with identical
input conditions (matching the experiment) with the sole exception of the
nonlinear absorption. In water at 527 nm K = 3 (three photon absorp-
tion) and by varying the nonlinear absorption coefficient $3) in the range
1.2 x 1072 - 8 x 10725 cm®/W? the peak intensity reached within the fila-
ment varies from 1 to 7 TW /cm?. Obviously we do not have the possibility
to observe a similar variation in experiments: it is not possible to artifi-
cially vary the nonlinear absorption coefficient without physically changing
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material (and therefore all other parameters) and increasing the input en-
ergy does not necessarily lead to a significant increase in peak intensity in
the filament. Fitting the numerically simulated spectra with Eq.5.2 we may
therefore track the variation of 3 and {2 versus intensity. The dashed lines
and symbols in Fig.5.9 show a very good agreement with the analytically
predicted dependence. The agreement is not perfect and this may be due
to certain approximations adopted in order to derive analytical relations
such as the particular form used to describe the nonlinear phase shift, ap-
proximated with that expected for a plane wave although the pump pulse
is actually tightly localized. However the overall agreement is notable in-
dicating that a deep understanding of the nonlinear processes dominating
ultrashort pulse filamentation may be obtained within the X wave model.
As a last note, this model predicts that pulse splitting should occur within
the filament simply as a result of phase matching in the nonlinear dynamics.
This remains true within the approximations of the model:

(i) strict energy and momentum conservation

(ii) the description of the pump and X waves in terms of their carriers only.
The symmetry resulting from this analysis might be violated if higher order
dispersive and nonlinear effects (e.g. self-generated plasma) are no longer
negligible. In other words certain settings (material, pump wavelength and
profile etc.) may lead to the formation of asymmetric X waves and even the
apparent formation of a single X wave if one of the two is much weaker in
intensity than the other.

5.4 Axial and conical emission: the “shocked” X wave

We have shown how interpreting a particular feature, the conical emission,
in terms of spontaneous formation of X waves leads to a simple model which
may explain many features of the whole filamentation process. Yet in this
discussion we ignored the role of the strong axial emission that is also a com-
mon feature of filamentation in all media (see for example Figs.5.1,5.4,3.8
or 3.18). In the next section we shall study the Townes profile modulational
instability and we will see that at the nonlinear focus the conical and axial
spectral components are connected through a longitudinally phase matched
Four Wave Mixing process ([92]). However in the fully formed filament this
connection is not so obvious as the axial spectrum is usually far more ex-
tended in frequency than the conical counterpart so that imposing a Four
Wave Mixing process as the connection between the two would require ac-
cepting a strong violation of energy conservation. Indeed axial and conical
emission are usually treated as independent phenomena and explained using
independent models. For example the axial spectrum has been explained as
the result of the formation of shock (or very steep) fronts in the pulse in-
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Fig. 5.10. Experimentally measured filament spectrum with a 1 ps, 1055
nm, 5 puJ laser pulse propagating in 15 cm of fused silica.

tensity profile [93]. Studying the on-axis intensity profile an optical shock
front is observed and explained to be the result of space-time focusing and
self-steepening. This shock front will result in a broad pedestal in the spec-
trum and is identified with the white light (or axial) continuum. However
others have given an explanation of the filamentation spectra in which con-
ical emission and axial continuum are different aspects of the same process:
X wave formation. As we have already discussed in chapter 1, the “effective
three wave mixing” model proposed by Kolesik et al. ([31, 33]) interprets
the same stationary mode profiles used within the X wave model as the
result of a phase matched three wave scattering process. If one relaxes the
phase matching constraint so that momentum conservation is not strictly
imposed then the spectrum will become a volume: the stationary mode pro-
file will expand around the Ak = 0 lines and the X tails will be connected
by a relatively intense axial continuum. This understanding therefore also
predicts that the axial continuum should extend only between the X tails:
one X tail at the pump wavelength and the other X tail at some shifted
wavelength (that is determined in the X wave model by the peak intensity
through Eq.5.9) represent the boundary of the axial continuum. Numerical
results seem to verify this prediction and Fig.5.10 shows an experimental
measurement of a filament spectrum generated with a 100 nm, 1 ps, 5 uJ
pulse in 15 cm of fused silica glass. The spectrum clearly shows the pump
X tails at 1055 nm and an X tail at 680 nm. Clearly the axial continuum
extends between these X tails and shows a sharp drop in energy at 680 nm
with no continuum extending further. We expect to see the same behavior
also toward the infrared region that is however invisible in this measurement
due to the sharp cut-off in the silicon detector sensitivity around 1000-1100
nm.
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Fig. 5.11. (a)-(e): Experimentally measured Gated Angular Spectra for

increasing delay within the filament wave-packet. Input parameters are \ =
800 nm, E = 3 uJ, duration 100 fs, in 4 cm of water. (f)-(j): numerically
simulated GAS experiment with the same input conditions and accounting
also for linear, dispersive propagation in the output imaging optics.

It is now interesting to question how this axial continuum should be con-
sidered within the X wave model ([94]). Indeed stationary X waves do not
exhibit a strong axial spectrum so clearly this is an additional feature re-
lated to the filamentation process. An appropriate tool that may give us
some insight into the physics of the connection between the axial and con-
ical spectra is the gated angular spectrum (GAS) technique described in
chapter 3 ([94]). We should recall that ultrashort laser pulse filamentation
is characterized by pulse splitting and that the resulting pulses are strongly
compressed in time. It is therefore necessary to use a very short 20-30 fs gate
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Fig. 5.12. (A, 7) diagram of the filament characterized in Fig.5.11. (a)
experimental data - the solid line highlights the clearly chirped red-shifted
axial continuum, (b) numerically simulated pulse inside the water sample
showing the presence of two separate red-shifted contributions, one slightly
chirped, the other with practically no chirp, (c¢) the same as in (b) but
accounting also for the effect of linear dispersive propagation in the output
imaging optics.

pulse in order to apply the GAS technique successfully. The experimental
setup is shown in Fig.3.9: a 50 cm focal length lens is used to focus the
100 fs, 800 nm input pump pulse into a 3 cm long sample of pure water.
The gate pulse is generated by a white-light parametric amplifier (Light
Conversion Ltd., Vilnius, Lithuania) that delivers tunable 20 fs pulses in
the 500-700 nm wavelength range. Fig.5.11(a)-(e) shows the experimentally
measured (0, \) spectra for various relative delays 7 of the 20 fs gate pulse
within the filament wave packet. Zero delay is defined with respect to a lin-
early propagating Gaussian pulse. For negative delays (the leading part of
the wave-packet) a red-shifted axial emission is observed. With increasing
delay (moving toward the wave-packet center) the red-shifted emission in-
creases in frequency. A dependence of frequency on time within a laser pulse
is known as chirp and is treated in chapter 3. One of the principal physical
effects that leads to pulse chirp is propagation in dispersive media. Normal
group velocity dispersion, the same encountered in water at wavelengths
shorter than 1000 nm, will lead to a shift of longer wavelengths toward the
front of the pulse, just as observed in Fig.5.11. For delays close to the pulse
center Fig.5.11 shows evident conical emission and finally, the trailing edge
of the wave-packet is characterized again by axial emission this time blue
shifted but still with the same chirp sign observed on the leading part of the
pulse. The observed pulse chirp renders somewhat difficult any association
of the various spectral features to well defined time slices within the pulse
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Fig. 5.13. numerically simulated filament wave-packet within the Kerr
medium. The top graph shows the near-field. The inset is an enlargement
of the leading split pulse highlighting the conical tails and the steep, rising
shock front. The bottom graph shows the gated spectrum for this same split
pulse that clearly shows the simultaneous presence of both conical emission
and axial continuum. These features are explained by the particular nature
of the X wave that is not truly stationary in the sense that the central
intensity spike presents a steep shock front.

inside the sample at the moment of their generation. We therefore resort
to numerical simulations performed with the same input conditions of the
experiment. By applying numerically the same GAS experiment method it
is possible to compare the numerical simulation with the actual experiment.
The results are shown in Fig.5.11(f)-(j) and reproduce quite precisely the
most important features that we are interested in here, namely the chirped
axial emission and the conical component. We note that in order to achieve
this agreement it was necessary to also include the effects of (linear and dis-
persive) propagation in the optics experimentally used to collect and image
the filament at the water sample output. Confident of the good agreement
between numerics and experiment we may now plot the data in a slightly
different format as shown in Fig.5.12 and focus our attention on the red-
shifted axial continuum. The experimental (0, 7) diagram (a) gives a clearer
view of the chirped axial emission and also allows to conclude that the chirp
is linear, thus giving a further indication that this chirp is due to dispersive
propagation. Fig. 5.12(c) shows the same diagram as simulated numerically
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accounting for propagation through optical lenses at the sample output and
confirms once more the agreement between numerics and experiments. Fi-
nally Fig.5.12(b) shows the same result as in (c) but now without accounting
for the external optics: the linear chirp has all but disappeared. Furthermore
the axial continuum is also clearly separated into two distinct contributions
(also seen as two partially overlapping peaks in Fig.5.11(a) and (b)). The
first of these still maintains some linear chirp while the other has practi-
cally no chirp at all. We interpret the residual chirp to be due to dispersive
propagation within the Kerr medium thus implying that the two contribu-
tions are originated at different points within the medium. Indeed the nu-
merical simulation shows that after the first focusing and splitting process
the wave-packet goes through a second spatiotemporal focusing stage that
leads to a further splitting. The second red-shifted contribution (indicated
with “2” in Fig.5.12(b)) clearly shows that the axial spectrum is generated
within an extremely short event. The first contribution (indicated with “1”
in Fig.5.12(b)) was generated at a shorter propagation distance and has thus
acquired some chirp (due to the longer propagation necessary to reach the
end of the sample) but, at the moment of generation was also concentrated
within an extremely short temporal interval. Furthermore the solid lines in
Fig.5.12 indicate that this short time interval is overlapped with the leading
split pulse intensity peak. These results lead us to the conclusion that in-
deed Gaeta was correct in predicting that the axial continuum arises as the
result of a shock front ([93]). Moreover if we interpret the intensity peaks in
the near-field as the central peaks of spontaneously formed (or forming) X
waves then we note how at the moment of formation the X waves are not
actually stationary in the sense that they are characterized by a shock front
that severely distorts the spectrum.

The presence of a shock front within the X wave is confirmed in Fig.5.13:
the top graph shows the numerically simulated wave-packet near-field profile
after 1.8 cm propagation, i.e. at the point in which the shock front reaches
its steepest point (shortly after the pulse splitting event). The inset is an
enlargement highlighting the trailing conical tails and the severe distortion
of the leading part of the pulse that exhibits a very steep temporal shock
front. Taking a gated angular spectrum of this same pulse (i.e. visualizing
only the spectrum generated by this pulse within a 20 fs window) we see that
indeed the spectrum is both conical and axial. This is what we may call a
“shocked” X wave in order to distinguish the pulse from the true stationary
X wave. Further propagation will lead to a relaxation of the shock front and
the “shocked” X wave will therefore diffuse toward a finally stationary X
wave.

The results shown for the red-shifted axial emission remain true also for the
blue-shifted component with the only difference that the shock fronts form
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on the trailing edge of the trailing split pulses. However it is important to
note that it is well known that in normal GVD and with ns > 0 shock fronts
will form on the trailing edge of the pulse. This is often explained as due
to the higher intensity central region that will travel slower than the lead-
ing and trailing tails, resulting in an accumulation of energy and steepening
at the pulse trailing edge [95]. This is also confirmed by Gaeta [93] and is
used to explain the blue shifted continuum emission. Yet here we clearly
observe rising shock fronts (i.e. on the leading edge of the pulse), apparently
in contradiction with the standard theory of shock-front formation. This re-
sult finds a natural explanation within the X wave model: the leading pulse
is characterized by superluminal propagation so that the intense peak will
travel faster than the surrounding energy reservoir and steepen on its lead-
ing edge. In a similar fashion the subluminal peal will steepen on its trailing
edge.






6

Filamentation Nonlinear Optics

The intensities reached within a filament may be extremely high, of the or-
der of a few TW /cm? in condensed media and even a factor 100 times higher
in gases. Furthermore the tightly focused intensity peak maintains its small
diameter over many diffraction lengths. For example in water intensity peak
diameters of the order of 20 pym are reached corresponding to a Rayleigh
range shorter than 1 mm, yet the intensity peak is maintained within the
filament over some centimeters. In air the situation is similar: peak diame-
ters of the order of 100 pm yet the filament propagates for distances up to
tens of meters, orders of magnitude further than the expected few-centimeter
Rayleigh range. This is an ideal context, very high peak intensities over very
long distances, in which to observe and exploit nonlinear optical effects.
The term “filamentation nonlinear optics” was first used by Chin et al. ([96])
to describe a series of nonlinear optical processes observed in air filaments
such as self phase modulation, spatial self-cleaning, third harmonic genera-
tion and seeded Four Wave Mixing.

In this chapter we will focus our attention on filament mediated nonlinear
processes in condensed media with particular emphasis on the interaction
between the intense filament and a weak seed. We shall give an overview of
the basic processes underlying the interaction and show how, starting from
the X wave model, it is possible to predict and explain some results obtained
in this regime ([97]).

6.1 Seeded filamentation: Cross Phase Modulation

6.1.1 Theory

A intense pump pulse in a kerr medium will experience a self-induced phase
change that will depend on the pulses intensity profile. This effect goes un-
der the name of self-phase modulation (SPM) and is related to a physical
variation of the material refractive index which may be described by the
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Fig. 6.1. Numerically simulated spectrum of a weak 640 nm weak seed
pulse in the presence of an intense optical filament in water. SRS is not
switched on so that only Kerr effects take place.

simple relation n = ng + nel where ng is the linear refractive index and
ng is the nonlinear refractive index excited by the pulse intensity I. As an
example of the entity of the index variation due to SPM consider the case
of water: ng ~ 2 x 10716 cm?/W so that a peak intensity of 1 TW/cm?
gives an index variation of ~ 2 x 107%. This is a relatively small variation
but due to the fact that it occurs over extremely short temporal or spatial
scales it may lead to very visible effects such as self focusing or frequency
broadening (see chapter 1). Due to the fact that SPM is related to a physical
change in the medium we should expect the variation in refractive index to
be felt also by another optical pulse that is co-propagating with the pump
pulse. This is called Cross-Phase Modulation (XPM). Equations 1.19 and

1.20 are two Nonlinear Schrodinger equations, one for the strong pump pulse
the other for the weak seed pulse, that are coupled through the XPM term
o ApAjAs. Lets consider a specific situation and take a closer look at the
physical interaction occurring through this coupling term.

In order to be able to distinguish between a pump pulse and a seed pulse
these must have for example different carrier frequencies. We may therefore
assume that the pump and seed pulses are spatially and temporally overlap-
ping at some point inside the Kerr medium and, due to material dispersion,
they will have different group velocities. The intense pump pulse will create
a (nonlinear) polarization wave P o A,AyAs = I, As: this may be consid-
ered as a wave that has the same envelope of the pump pulse but oscillates
at the carrier frequency of the weak seed. XPM that will occur in the full
3D+1 case. This is just another way of explaining a scattering process in
which the weak seed is scattered from the nonlinear polarization induced by



6.1 Seeded filamentation: Cross Phase Modulation 127

-3
1X10 X10-6 X164
z=0 cm 0.1} z=2.18 cm 16
g 05 /\\ 2 005 3
S o o 0 s > 0
= -2000 -1000 1000 2000 4 -400 -200 O 200 400 .
|_ - -
o 10
© 0.1 ) z=2.5cm 6
— 0.05 3
i ST N N0
-400 -200 0 200 400 -400 -200 0 200 400

t (fs) t (fs)

Fig. 6.2. Numerical simulation of a 527 nm, 200 fs pump pulse that forms
a filament in presence of a weak seed at 640 nm. Solid lines are the on-axis
intensity profiles for the pump filament (left axis). The dashed lines show
the on-axis intensity profiles of the weak seed (right axis) that is reshaped
through XPM. Clearly the seed develops peaks that mimic the pump profile
and travel at the same group velocity of the pump split pulses.

the strong pump.

The weak seed pulse which may be approximated by a plane monochro-
matic wave at the input with transverse wave-vector and frequency (0,wy),
is therefore scattered by this perturbation into an output wave (Kperp,w).
This scattering process should preserve the total momentum however, due
to the tight spatial localization of the intensity peak within the filament,
we need not impose transverse momentum conservation [98, 53]. Therefore,
imposing only longitudinal k£, momentum conservation leads to

kz,out(KLaw) = kin(07w0) + (61)

Upol

where, for energy conservation {2 = w—wg and the polarization perturbation
velocity vpo = vgp. The important point here is that Eq.(6.1) identical to
Eq.2.13 with § =0 and a = k{, — 1/vg . In other words, the scattered wave
forms a stationary (non-dispersive) conical wave packet that propagates with
a group velocity given by that of the input pump. This is rather surprising
as it implies that we may arbitrarily choose the carrier frequency ws for the
seed pulse and this will determine the phase velocity, but the group velocity
is determined solely by the pump pulse and may be very different from the
expected value vy s = dw/dk|.,.

This is a rather surprising discovery and indicates the possibility to generate
stationary X waves or more in general conical wave states through XPM.
Optical filaments could be the ideal candidate pump pulses for this purpose,
not so much because they themselves are already conical waves but most
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importantly because of the very high peak intensities reached within the fil-
ament and that render the XPM particularly efficient. As a demonstration
of this idea Fig.6.1 shows a numerically simulated spectral reshaping of a
weak 640 nm seed in the presence of a filament generated by a 3 pJ, 200
fs, 527 nm pump pulse. The pump pulse shows strong X features as already
discussed in the previous chapters but the seed too, initially Gaussian, has
reshaped into an X wave as predicted by the simple theory outlined above.
In order to prove that the pump and seed pulse travel at the same velocity
in Fig.6.2 we show the on-axis intensity profiles of the pump (solid lines)
and seed pulses (dashed lines) for various propagation distances z. At the
input both profiles are Gaussian but the intense pump soon initiates a fil-
ament and splits in two. These two pulses travel super and sub-luminally
with respect to the input pump wavelength but also with respect to the seed
at 640 nm. This leads to the formation of the red and (weaker) blue shifted
conical emission (Fig.6.1) and the same conical emission is also responsible
for the formation of the peaks appearing in the seed profile and that indeed
travel locked with the pump pulses.

6.1.2 Experiments

Figure 6.3 shows the experimental setup used to investigate the interaction
between a week seed signal and a much stronger pump that undergoes fila-
mentation. The pump pulse, generated by a Nd:glass laser (Twinkle, Light
Conversion Ltd., Vilnius, Lithuania) has a wavelength of 527 nm, a pulse
duration of 1 ps and energy was limited to 1-10 uJ while the seed, gener-
ated from a parametric amplifier (TOPAS, Light Conversion Ltd., Vilnius,
Lithuania) may be tuned continuously across the visible range into the in-
frared region. The pulse duration in the visible range is 500 fs and energy is
limited to 100-250 nJ. A variable delay line ensures the possibility to change
the relative delay between pump and seed pulses and optimize the overlap
within the Kerr medium.

Figure 6.4(a) shows a measured spectrum for the case in which the pump
pulse has not yet formed a filament. This was obtained by fixing the water
sample length to 4 cm and varying the input energy until some significant
self-focusing (i.e. broadening the spectrum) is observed but without a clear
formation of X shaped features. This corresponds to an input energy of
about 1.4 — 1.5 pJ with a collimated beam diameter of 90 ym. The 500 nm
seed energy was 250 nJ with a larger beam diameter of 170 um in order
to render less critical the spatial overlap between pump and seed beams.
No effect is seen on the seed spectrum unless the delay is changed so that
the pulses overlap toward the end of the water sample, i.e. in the region in
which the pump reaches its highest intensity. In this condition the observed
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Fig. 6.3. Experimental layout for Filament nonlinear optics based on seeded
interactions between a strong pump pulse and a tunable-wavelength weak
probe pulse.

spectrum is shown in Fig.6.4(a). This spectrum was captured in full color

(Nikon D70) but in the original image the pump spectrum at 527 nm showed
no particular features as these were covered by a relatively strong scattering
of green light. By removing the red and green channels of the color image
and enhancing the blue channel we obtain the spectrum shown Fig.6.4(b). A
weak blue-shifted conical emission tail is now visible also around the pump
wavelength. This is a signature of the onset of filamentation and the for-
mation of an X wave (although the filament is not fully formed). The input
Gaussian seed has also developed a clear conical emission. The group ve-
locities calculated from the conical emission of the seed and pump pulses
are 2.33 £ 0.02 x 108 m/s and 2.35 £+ 0.1 x 10® m/s, respectively. The two
velocities are practically equal as predicted by our theory for XPM-induced
conical emission.

Increasing the input pump energy will lead to the formation of a filament
and the appearance of clear X shaped features around the pump wavelength.
In Fig.6.5 we show this case with the seed now tuned to 490 nm: as expected
the seed is still reshaping with a marked blue conical emission. Proceeding
as before, if we take the blue shifted tails around the 527 nm pump wave-
length, these give a group velocity of 2.237 4-0.004 x 10® m/s while the seed
conical emission gives us 2.27 £ 0.06 x 10® m/s, values which are still equal
to each other within the experimental error. In Fig.5.2 we showed that the
group velocity of the split pulses changes during the filament propagation.
The experimental spectra in figs.6.4 and 6.5 (and the relative group veloc-
ities) confirm that the weak seed is locally reshaped into an X wave with
an intensity peak that follows the same evolution of the pump pulse, as ob-
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Fig. 6.4. Experimentally measured spectral reshaping of a 500 nm seed
pulse with a self-focusing intense 527 nm pump pulse. (a) is the full color
image acquired with a Nikon D70 camera. (b) is the same image in black
and white after having eliminated the red and green channels so as to render
visible the conical emission originating from the pump.

480 500 520 540 560 580
A (nm)

Fig. 6.5. Experimentally measured spectral reshaping of a 490 nm seed
pulse with a self-focusing intense 527 nm pump pulse. The pump pulse forms
a filament as is evident from the strong conical emission. Strong reshaping
of the seed pulse is observed with the formation of a pulse that is locked in
group velocity to one of the split pump pulses.

served also in the numerical simulations (Fig.6.2).

These measurements clearly confirm the predictions based on XPM-indiced
reshaping. Now we may try to tune the seed wavelength over a broad spec-
tral range in order to verify if other nonlinear processes occur. In particular
we may expect Four Wave Mixing and Stimulated Raman Scattering.
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Fig. 6.6. (a) Experimentally measured spectrum with a seeded filament in
3 cm of water. Seed wavelength is 550 nm, idler generated by FWM is at 505
nm. (b) Experimentally measured gain of seed pulse with varying input seed
wavelength. A ~ 80x gain due to FWM is observed, with a bandwidth of 60
nm. The large 1000x gain at ~640 is due to Stimulated Raman Scattering

6.2 Seeded filamentation: Four Wave Mixing

Théberge et al. have proposed a beautiful experiment in which efficient Four
Wave Mixing was excited within a 10-30 cm filament (generated in air by
a 2 mJ, 800 nm pump pulse) and a tunable weak seed [99]. The process
generated an idler wave tunable in the 475-650 nm range with maximum
conversion efficiencies (from signal to idler) of the order of 15% (and up
to 40% for filaments generated in Argon gas) giving an idler energy of 10
wd. Using the experimental setup shown in Fig.6.3 it is possible to repeat a
similar experiment in condensed media, with much shorter filament lengths
and much lower input energies (uJ and not mJ for the pump, nJ and pJ for
the seed).

Fig.6.6 shows a measured spectrum of a 3 uJ, 527 nm filament in water
in presence of a weak seed tuned to 550 nm. Reshaping of the seed due to
XPM is clear but now a third pulse at the idler wavelength (505 nm) has
also appeared as a result of Four Wave Mixing. The idler signal also exhibits
a clear X-like structure. Deriving the group velocities for the 2 pump pulses
Vg1, Vg,2), the signal (vg) and the idler (vg;) we find

vg1 = 2.1740.02 x 10°m/s (red-shifted tails),
Vg2 = 2.236 + 0.005 x 10°m/s  (blue-shifted tails),
vg.s = 2.236 + 0.006 x 10%m/s,

vy = 2.248 £0.01 x 10%m/s.

These values indicate that the seed, idler and leading pump X pulse are
all traveling with the same group velocity. We measured the gain at the
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seed wavelength by taking the ratio between the peak fluence of the output
signal with respect to that of the input seed pulse. This does not give the
total gain in energy due to the fact that the input seed is somewhat larger
than the tightly focused pump filament but rather a measure of the “local”
gain within the seed pulse. Figure 6.6(b) shows that the gain is roughly
a factor 80 over a large 60 nm bandwidth. Tuning the seed further away
leads to a decrease in the FWM efliciency, yet a huge 1000 x increase in gain
is observed around 637 nm. This wavelength corresponds to the expected
wavelength shift induced by Stimulated Raman Scattering (SRS) in water.
The bandwidth of the gain peak also corresponds to the ~ 200 ¢cm™1 re-
ported in literature ([98]) therefore confirming that indeed this large gain
may be ascribed to SRS.

6.3 Raman X waves

SRS is a resonant nonlinear process by which energy from an incoming pump
pulse may be transferred to a Stokes signal at a red-shifted wavelength that
depends on the particular material. This energy transfer is mediated by
rotational or vibrational levels of the medium and the phase matching con-
straints are automatically satisfied in this interaction. Therefore the main
limitation to SRS frequency conversion with ultrashort laser pulses is no
longer related to momentum conservation but rather to group velocity mis-
match that leads to detrimental temporal walk-off between the pump and
the Stokes pulses. In order to appreciate the effect of GVM let us consider
the case under study, i.e. water with a pump pulse at 527 nm and a Stokes
signal at 637 nm. The GVM calculated using the known water Sellmeier
coefficients [54] is 28 ps/m. This implies that a 1 ps pulse will split by a
pulse duration after 3.5 c¢m, so practically no significant reduction of the

SRS conversion efficiency will be observed in a 2-3 cm long water cell. How-
ever we noted that in the first cm of propagation within the water cell no
SRS was measured. On the contrary significant SRS and high seed gain were
measured toward the end of the 3 cm water cell. This is in keeping with the
fact that during the first cm the pump pulse still has a relatively low peak
intensity. Longer propagation leads to the formation of a filament with much
higher peak intensities but also characterized by pulse splitting with a sig-
nificant temporal compression. Numerical simulations give a pulse duration
in this regime of the order of 50 fs and therefore the splitting length will be
only 1.8 mm.

Yet our measurements show a very large 1000x gain in the peak fluence at
the Stokes frequency indicating that the SRS process is still rather efficient.
This may be easily explained with a model in which the seed is reshaped by
XPM: an intense (with respect to the input seed profile) peak is formed that
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Fig. 6.7. (a) Autocorrelation trace of the pump filament, £ = 3.4 uJ. The
trace shows the presence of three split pulses with a duration FWHM of 70
fs. (b) Autocorrelation trace of the Stokes signal at zero delay. The trace
shows 2, maybe 3 split pulses, with a duration FWHM of 60 fs. (¢) and (d)
are the near field fluence profiles of the filament and of the Stokes pulse at
the sample output. (e) is the input seed near field fluence profile.

is sustained by the surrounding XPM-induced conical emission and travels
at the same group velocity of the pump pulse. This peak in the seed profile
may then be amplified by SRS. In Fig.6.7(a) and (b) we show the autocor-
relation traces of the pump filament and of the amplified Stokes signal at
the water sample output and for the delay at which the maximum gain was
observed. In order to perform these autocorrelation measurements great care
was taken in imaging with a telescope the output facet of the water sample
onto the nonlinear crystal used for the autocorrelation. Indeed the filament
and Stokes pulses are X waves i.e. they are non-dispersive in the medium
in which they spontaneously formed (water) due to the angular dispersion
that cancels out diffraction and dispersion. But in air, due to the same an-
gular dispersion the X waves will experience a strong anomalous dispersion
and therefore spread in time. This problem may be avoided by using an
imaging telescope that reconstructs the pulse in amplitude and phase at the
nonlinear crystal surface. Some residual broadening is still expected due to
propagation in the fused silica lenses but this may be avoided only with a
much more complicated and expensive setup using parabolic mirrors. The
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Fig. 6.8. Experimentally measured (0, \) spectra of a 527 nm filament in 3
cm of water (pump energy = 2.4 pJ, duration = 1 ps) with a weak ~ 200 nJ
seed at 637 nm for various delays 7 between pump and seed. (a) 7 = —400
fs, (b) 7 =0 fs, (¢) 7 = 4400 fs. The “switching” from one Raman X wave
to the other is evident.

autocorrelation traces measured in this way show a large background with
five spikes. The large background is in keeping with the nature of X waves
that are indeed formed by a large energy reservoir and a central peak. Five
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Fig. 6.9. Numerically simulated spectra with the same input parameters
as in Fig.6.8 for various delays: (a) 200 fs (b) 400 fs, (c) 600 fs, (d) 800 fs,
(e) 1000 fs, (e) 1200 fs. All plots are in a 7 decade logarithmic scale.

peaks in the autocorrelation traces indicate the presence of three intensity
peaks in the near field and, assuming a Gaussian shape for these peaks we
find FWHM durations of 70 fs for the pump pulses and 60 fs for the Stokes
pulses.

Figures 6.7(c)-(e) show the near-field fluence profiles of the pump filament,
the amplified seed and the input seed respectively. It is clear that the seed is
amplified only in the close vicinity of the filament. The high spatial quality
of the filament also leads to an improved spatial quality of the Stokes pulse
with respect to the input seed. Note that (d) was obtained by strongly at-
tenuating the beam so as to not saturate the CCD camera and therefore the
large background, corresponding to the input seed (that is not amplified) is
no longer visible.

We stress that the important result here is not the actual size or duration
of the pulses themselves but rather the close correspondence between the
filament and the amplified seed indicating a XPM-induced formation of in-
tense X waves at the Stokes frequency that we may therefore call Raman X
waves [100].

Figures 6.8(a)-(c) show three experimentally measured spectra of the full
pump-filament and Stokes region. Due to the large spectra range covered
these spectra are not truly single shot in the sense that they are composed
of independent single shot measurements. The different spectra correspond
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Fig. 6.10. Longitudinal phase matching diagram between 2 on axis photons
k12, 1 X wave photon kx and 1 “whisker” photon, kyy .

to different input delays between the pump and seed pulses, with delay in-
creasing in steps of 400 fs from (a) to (c). For the intermediate delay, which
we arbitrarily define as “zero-delay”, clear X features are observed around
the pump wavelength as expected due to filamentation, and also around the
stokes ~640 nm wavelength (Raman X waves). It was shown in ref.[100]
that the group velocities of the Raman X waves matches quite closely those
of the pump X waves thus explaining, as mentioned earlier, the high gain.
Furthermore a clear switching mechanism is observed from one Raman X
wave (negative delay), to two Raman X waves (zero delay) and finally to a
single but opposite Raman X wave for positive delays.

Numerical simulations were performed of this process and are shown in
figs.6.9(a)-(f) which display the spectra in (6, \) coordinates (in air) for
direct comparison with the experiment and for delay increasing in 200 fs
steps. The effect of SRS is accounted for as a delayed Kerr nonlinearity
with an exponentially damped response function, R(¢). The nonlinear term
described in Eq.1.32 becomes

NE) = ko

¢ k
e (ke o [ atno—opEe)r) 20/)] ’
ng - tope
+ ikoTOk|EN2E

with  R(t) = Roexp(—I't)sinwgt.

where Ry = (I'? + w%)/wg. Good agreement between numerics and exper-
iments was obtained with a Raman fraction o = 0.16, ny = 3.2 x 10'6
cm?/W, I' = 37.5 THz, wp = 618 THz. We note that the requirement of an
overall agreement between experiment and numerics leads to a Raman gain
coefficient that is actually 30% smaller than that reported in literature [98].
Using these parameters the same switching mechanism is observed as in
the experiments. Notably this switching effect can only be observed with a
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Fig. 6.11. Direct comparison between experimental (a) (taken from
Fig.6.8(b)) and numerical (b) (taken from Fig.6.9(c)) spectra. The white
lines are the best fits obtained using stationary conical wave profiles and
longitudinal phase matching relations as described in fig.6.10.

somewhat limited range of input conditions and most importantly the input
seed duration should be somewhat shorter than the input pump duration
(in both experiments and numerics these durations were 490 fs and 1 ps
FWHM, respectively). This may be explained by noting that the pump is
split in two and we may change the delay so that the seed pulse has a signif-
icant overlap with only one of the pump X pulses and only a single Raman
X wave is excited.

Let us now return to Fig.6.8(b) and draw attention to the off-axis features
around 450 nm and 800 nm. Similar features are present in all three graphs
in Fig.6.8 and are even visible, although very weak, in Fig.6.1. This last ob-
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servation indicates that these features are not a direct product of the SRS
process as they are present even when SRS is switched off (in the numer-
ics). The proposed mechanism by which these “whiskers” are created is a
longitudinally phase matched FWM between 2 degenerate on-axis photons
and 1 photon belonging to an X wave. A scheme of this phase matching
configuration is shown in Fig.6.10. We consider two possibilities:

1. the two degenerate on-axis photons belong to the 527 nm pump; the
X wave photon belongs to one of the Raman X waves. The Raman X
waves are described by the conical wave relation (shown for clarity in
Fig.6.10). We have two possible choices for the Raman X wave that are
distinguished by the different value of the only free parameter, the group
velocity vy. Due to the underlying XPM reshaping process these values
are equal the pump X wave velocities, vy 1 and vy 2. This phase matching
configuration will give rise to the two “whiskers” around 450 nm: each of
the two “whiskers” is determined by the one of the two possible values
for the group velocity.

2. the two degenerate on-axis photons belong to the Stokes signal; the X
wave photon belongs to one of the pump X waves. Here too the angles
of the pump photons are described by the conical wave relation using
the same values for the group velocity as in 1., v41 and vg 2. This phase
matching configuration will give the two “whiskers” located around 800
nm.

In Fig.6.11(a) we reproduce Fig.6.8(b) along with its numerical analog in (b).
Both spectra are plotted in the same false color scheme so as to facilitate
comparison. The white lines shows the phase matching curves described
above. They are obtained from the relations

2
k.

with ks = kpsnp.s + vi(k k) (6.2)
g

2k, snp,s — k cos 0§p> (6.3)

ijr()\) = cos ™! ( oy
X

where 0, is the X wave dispersion relation for the pump (p) and the seed
(8), kp,s = 2w/, s is the wave-vector calculated at the pump and seed wave-
lengths and 6}’ gives the “whisker” phase matching relation at the blue (b)
~ 450 nm and red (r) ~ 800 nm wavelengths. It is important to note that
there is only one free parameter, namely the X wave group velocity vy, that
determines at the same time the shape of the pump and Raman X waves
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Fig. 6.12. With higher pump energies (3.4 pJ) more complex features
and interference fringes due to multiple pulse splitting are observed but the
overall structure remains unvaried. (a) experiment and (b) numerics.

and also the precise shape of the “whisker” patterns.

The solid lines correspond to a single value v, = v41, = 2.18 x 10® m/s for
the experimental measurement (a) and to vy = vy, = 2.192 x 108 m/s for
the numerical spectrum (b). The dashed lines give the pump and Raman
X waves and the “whisker” features for vy = v42. = 2.238 X 108 m/s for
the experimental measurement (a) and vy = vy2, = 2.23 x 108 m/s for the
numerical spectrum (b).

So far we have considered only spectra for a fixed input pump energy. In-
creasing the pump energy does not change the overall picture or behavior
although some minor differences are observed. Figures 6.12(a) and (b) show
the experimental and numerical spectra with a pump energy of 3.4 uJ. A first
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Fig. 6.13. Experimentally measured spectrum for a 3.5 uJ filament in
ethanol. The seed is at the Stokes wavelength, 623 nm and the Raman X is

so strong that it becomes the dominant feature in the spectrum. At ~ 760 nm
a spontaneously formed X wave at the second Stokes wavelength is observed.

observation regards the pump X waves: at lower energies the SRS process
leads, for some delays, to a very strong depletion and eventually to a com-
plete disappearance of one of the pump X waves (see for example figs.6.8(b)
and (c)). At higher input pump energies the larger amount of energy in the
pump avoids such strong depletion. Furthermore the spectra at 3.4 pJ show
a generally more complicated profile with many interference fringes that are
the result of multiple splitting processes, i.e. similar spectral features gener-
ated by temporally shifted split pulses.

As a final comment we note that in media with higher SRS gain, cascaded
Raman X generation may be observed. Figure 6.13 shows a spectrum mea-
sured with a 3.5 pJ in 4 cm of ethanol. Ethanol has roughly 20x higher
gain than water [98]: the seed at the Stokes wavelength of 623 nm [98] is
strongly amplified and the Raman X waves become the dominant feature in
the spectrum with a 50% energy conversion efficiency from the pump pulse.
At the second Stokes wavelength 760 nm, a strong Raman X wave is also
observed that carries about 20% of the input pump energy. A clear depletion
of the pump X waves is visible (the red shifted tails that are clearly visible
in the absence of the seed, have completely disappeared) as are all “whisker”
features albeit at different angles due to the different dispersion properties
in ethanol with respect to water.

An interesting observation related to energy measurements is the apparent
improvement in the shot-to-shot energy stability of the output amplified seed
pulse with respect to the input seed. For example a set of measurements in
water we had an input seed energy E;;, = 130+ 30 nJ corresponding to 23%
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stability. At the sample output we measured an overall 7x gain in energy,
Eyt = 920 £ 63 corresponding to a stability better than 7%. The input
pump stability was 1.5% and we may expect intensity clamping to lead to
a stabilization of the peak intensities reached within the filament [99] yet
this is not sufficient to explain the amplified seed stability. In the low-gain
regime the pump is not modified by the interaction with the seed and its
dynamics may essentially be approximated by those of the filament with
no seeding. Intensity clamping within the filament is explained as a balance
between the self-focusing Kerr effect and plasma defocusing! and evidence
has been reported of such an effect occurring in water [101] however even
an ideal, non-fluctuating pump pulse, would be expected to amplify both
the seed and its fluctuations. This clearly does not occur ([99]) so some non-
trivial interaction between the seed and the pump filament is taking place
that needs further investigation. On the other hand, in the pump depletion
regime intensity clamping is much less likely and the seed output energy
stabilization may simply be explained as an effect related to the pump de-
pletion itself. A decrease in the pump intensity due to depletion will lead to
a decrease in the seed gain so a lower energy seed pulse will gain a bit more
than higher energy seed pulses with an overall leveling effect of any input
fluctuations.

1 Tt is important to note that this explanation, although valid for filaments
in air should be extended with care in the case of condensed media. For
example in water there are other competing mechanisms that may balance
the Kerr effect such as nonlinear losses and group velocity dispersion.
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