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Model-free estimation of the Cramér–Rao 
bound for deep learning microscopy in 
complex media
 

Ilya Starshynov    1,4, Maximilian Weimar    2,4, Lukas M. Rachbauer    2, 
Günther Hackl2, Daniele Faccio    1, Stefan Rotter    2 & Dorian Bouchet    3 

Artificial neural networks have become important tools to harness the 
complexity of disordered or random photonic systems. Recent applications 
include the recovery of information from light that has been scrambled 
during propagation through a complex scattering medium, especially in 
the challenging case in which the deterministic input–output transmission 
matrix cannot be measured. This naturally raises the question of what the 
limit is that information theory imposes on this recovery process, and 
whether neural networks can actually reach this limit. To answer these 
questions, we introduce a model-free approach to calculate the Cramér–
Rao bound, which sets the ultimate precision limit at which artificial 
neural networks can operate. As an example, we apply this approach in 
a proof-of-principle experiment using laser light propagating through a 
disordered medium, evidencing that a convolutional network approaches 
the ultimate precision limit in the challenging task of localizing a reflective 
target hidden behind a dynamically fluctuating scattering medium. The 
model-free method introduced here is generally applicable to benchmark 
the performance of any deep learning microscope, to drive algorithmic 
developments and to push the precision of metrology and imaging 
techniques to their ultimate limit.

Complexity and related chaotic processes form the foundation of 
many physical phenomena. At the same time, complexity has hindered 
the capability to predict the evolution of physical systems in various 
research fields ranging from biophotonics1,2 to quantum optics3. How-
ever, over the past few years, many of these fields have seen remark-
able progress as a result of data-driven models and machine learning 
approaches, which are capable of harnessing the complexity of physical 
dynamics with surprising effectiveness4. In essence, these data-driven 
models process physical information from the training data and build 
a representative statistical model from these data. The question of 
how exactly this information is maintained and distilled by an artificial 

neural network (ANN) then naturally arises, especially for applications 
in photonics that require the reconstruction of images5 or the precise 
estimation of physical observables6.

Light propagation through a complex medium is a typical example 
of a research area that has seen major advances owing to data-driven 
models7. Although the propagation of light is ruled by simple laws in 
homogeneous media, retrieving information through complex scatter-
ing media is a critical challenge, as light typically undergoes a number 
of unknown scattering and absorption events during propagation8. 
Several imaging techniques that were originally developed to address 
the challenges associated with complex light scattering are based on 
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required information is not a global image in itself, but specific features 
of interest that could potentially be extracted from this image, such 
as the size or the position of an object41–44. In this framework, the rele
vant physical limit is the Cramér–Rao bound, which sets the ultimate  
precision with which parameters of interest can be estimated45. How-
ever, calculating this bound is a challenging task in complex systems. 
Indeed, the expression of the Cramér–Rao bound is based on the  
probability density function (PDF) describing the data statistics, the 
analytical expression of which is typically unknown.

Here we overcome this hurdle by introducing an approach to 
calculate the Cramér–Rao bound solely from experimental data, 
even when a physical model describing the data is not available. We 
then use this benchmark to assess the performance of different types 
of ANNs that we have trained to estimate the position of an object 
through a dynamic scattering sample. For this task, our analysis dem-
onstrates that a convolutional neural network (CNN) approaches the 
limit set by the Cramér–Rao bound. In our experiments, we consider 
the canonical case of a target object hidden behind a random scatter-
ing medium (Fig. 1a). We illuminate the medium with a laser, which 
gets transmitted to the hidden object as a random speckle pattern 
of light. The retro-reflected light passes back through the random 
medium before being collected by a camera (Methods provides a 
detailed description of the optical setup). Our aim is to precisely 
estimate the position θ = (xt, yt) of this object from a single-intensity 
frame collected by the camera. In practice, as an object, we use a 
reflecting target displayed by a digital micromirror device (DMD). 
This target is hidden behind a dynamic random scattering sample 
composed of a suspension of TiO2 particles in glycerol, which is being 
pumped through a flow cuvette. The decorrelation time is such that 
two successive frames are uncorrelated (Methods). In this configu-
ration, we can vary the concentration of TiO2 particles to tune the 
scattering mean free path ℓ and control the optical thickness b = L/ℓ 
of the medium, where L is the optical path in the cuvette. To study 
different scattering regimes, we vary the optical thickness b from 1.7 
to 5, which we also compared with the case in which light propagates 
in free space (b = 0). Although the target can be easily localized in 
free space, the occurrence of random scattering events results in the 
generation of speckle patterns that completely conceal the target 
in the case of large optical thicknesses (Fig. 1b and Supplementary 
Information, section 2).

the insight that the measured output random patterns (referred to as 
speckle patterns) are the deterministic results of millions of scattering 
events9. In particular, a popular approach is to experimentally measure 
the deterministic relation between object and image planes, which is 
conveniently done in a scattering matrix formalism10–12; the knowledge 
of this matrix can then be used to effectively transform the scattering 
medium into a simple optical element13,14. Nevertheless, in many cases  
of interest, including those involving dynamical scattering media  
that change in time, this deterministic relation cannot be measured 
without the use of a guidestar15, which limits the practical applicability 
of the approach.

To reconstruct images through such media considering the occur-
rence of random scattering events, a number of techniques have been 
developed such as multiphoton microscopy16,17, optical coherence 
tomography18,19 and correlation imaging20,21, but these are limited to 
specific application scenarios. In recent years, the emergence of ANNs 
has been a game changer in this field; indeed, deep neural networks 
were shown to be able to learn to image through a known or fixed 
scattering medium, or even reconstruct images hidden by unseen 
scattering media, with remarkable fidelity22–38.

To benchmark the performance of these techniques, an insight-
ful strategy consists of studying the fundamental limits imposed by  
physical laws on the quality of the reconstructed images. One such limit 
is the Abbe limit, which describes the ultimate resolution achievable 
with an imaging system. However, although this limit is well defined 
in homogeneous media, it cannot be used when imaging through 
scattering media. Indeed, multiple scattering effects alter light fields 
in a complex way, not only affecting the resolution but also impact-
ing its contrast, possibly with the apparition of artefacts. Moreover, 
resolution is not a relevant metric to describe the performance of  
most computational imaging techniques, including those based on 
ANNs, since they often break the Abbe limit by including prior infor
mation about the object in the reconstruction procedure.

Instead of image resolution, we propose here to use a criterion that 
overcomes these shortcomings and sets a quantitative benchmark to 
assess the ability of ANNs to extract information from physical measure-
ments. This criterion, which is commonly used in optical metrology39,40 
and which is applicable to any physical system, is implemented and 
demonstrated here for the specific case of light propagation in com-
plex scattering media. The approach relies on the assumption that the 
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Fig. 1 | Principle of the experiment. a, A reflective target is placed behind a 
dynamic scattering sample. Our goal is to infer its position from the reflected 
coherent light using different ANNs, and compare the precision of the ANNs 
with the ultimate limit calculated using Fisher information theory. b, Examples 
of pairs of measured images with two adjacent target positions (see the top and 

bottom rows) at different scattering strengths (see the three columns labelled by 
the optical thickness b = L/ℓ). In the case of a strongly scattering sample (b = 5), 
the precise target position cannot be easily estimated from such images due to 
random light scattering occurring within the dynamic medium.
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Results
Estimation of the Cramér–Rao bound
Our first goal is to assess the ultimate localization precision achievable 
through dynamic scattering media. For this purpose, we use a general 
framework based on statistical estimation theory45. Owing to statistical 
fluctuations arising from random interactions between the complex 
medium and the probe field, the connection between measured data 
X and parameters of interest θ is intrinsically probabilistic. We can, 
thus, describe it using the PDF p(X; θ), which is parameterized by the  
vector θ containing all parameters of interest, such as the spatial  
coordinates xt and yt of the target. Note that this PDF is also known as  
the likelihood function. In this picture, the measured data are repre
sented by the random vector X, composed of N random variables 
Xk representing the intensity values measured by each pixel of the  
camera. Then, the Cramér–Rao inequality sets an ultimate limit on the 
precision of the estimated values of θ. More precisely, the standard 
deviation σi(θ) of any unbiased estimator of the ith component of θ 
satisfies45

σi(θ) ≥ Ci(θ) = √[𝒥𝒥−1 (θ)]ii, (1)

where 𝒥𝒥 (θ) is the Fisher information matrix and Ci(θ) is the Cramér–Rao 
bound on the ith component of θ. The Fisher information matrix is 
defined by

[𝒥𝒥 (θ)]ij = ⟨(∂ln[p(X;θ)]∂θi
) (∂ln[p(X;θ)]∂θj

)⟩ , (2)

where 〈…〉 denotes the average over statistical fluctuations.
This formalism is very general, as it sets an ultimate limit on the 

precision of the estimated values of θ regardless of the physical origin of 
statistical fluctuations. Typically, the Cramér–Rao bound is calculated 
for shot-noise-limited measurements or for measurements corrupted 
by an additive Gaussian noise. Examples include single-molecule locali-
zation microscopy46,47, non-line-of-sight configurations48 and static 
scattering media described by known scattering matrices49–51. In such 
cases, measurements follow either Gaussian or Poissonian statistics, 
and calculating the Cramér–Rao bound is relatively straightforward as 
equation (2) then takes a simple analytical form. By contrast, for complex 
scattering media that change in time, statistical fluctuations are domi-
nated by random scattering events and no simple analytical solutions are 
available for equation (2). Indeed, the noise statistics is unknown, and 
the random variables Xk (which represent the measured pixel values) are 
correlated with each other and do not follow a simple parametric model. 
We, thus, need to rely on non-parametric estimations of the distribution, 
which is challenging due to the high dimension of the random variable.

In this work, we show how to overcome this difficulty by evaluat-
ing the Cramér–Rao bound solely from experimental measurements, 
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Fig. 2 | Demonstration of the Fisher information estimation procedure 
using numerically generated data. a, Representation of the procedure used to 
evaluate the Fisher information. Images (raw data) are measured as a function 
of time, that is, for different noise realizations (left). Statistical independence 
between different image pixels is restored using either PCA for Gaussian 
statistics or ICA for non-Gaussian statistics (middle). The underlying probability 
distributions are then estimated using equal-frequency binning (right). 
Replicating this analysis for different values of θ (represented in red and green) 
allows us to estimate the Fisher information with a finite-difference scheme.  

b, Numerical demonstration of the procedure for data with correlated Gaussian 
statistics (following the distribution shown in the inset). The blue curve depicts 
the estimated Fisher information (FI) divided by the true Fisher information, 
as a function of the step size of the finite-difference scheme. A clear plateau 
is observed when the estimated Fisher information reaches the true Fisher 
information, the optimal value of the step size Δθthr being identified using a 
stability criterion based on the second derivative of this function. c, Analogous 
to b but for data with correlated non-Gaussian statistics, demonstrating the 
efficiency of the method even for such complex statistics.
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approximating the underlying PDF from a finite number of samples 
(Fig. 2a shows a graphical illustration of this approach). First, we 
address the problem of correlations by applying a transformation 
to the data that preserves the information content but removes the 
dependencies between the components of X. A common approach, 
based on a principal component analysis (PCA)52, is to estimate the 
covariance matrix of the data and choose a transformation that diago-
nalizes this matrix. This approach, however, does not guarantee statis
tical independence between the components. To improve on this 
method, we use a so-called independent component analysis (ICA)53, 
which allows to construct a linear transformation Y = AX that minimizes 
the dependencies between components of the random variable, har-
nessing more degrees of freedom for choosing the transformation. 
From the transformed data, we then estimate the underlying density 
function p(Y; θ) using equal-frequency histograms, which allows for 
more stable derivative estimates compared with histograms based 
on uniform bin widths. This enables us to construct an estimator of 
the Fisher information by approximating the derivatives of p(Y; θ) 
with a finite-difference scheme. The value of the step size Δθ is chosen  
by evaluating our estimator as a function of Δθ and using a stability 
criterion based on the second derivative of this function (Methods  
and Supplementary Information, section 3.4).

To demonstrate the performance of our approach, we test it on 
numerically generated data with known Fisher information. We first 
generate 50-dimensional multivariate Gaussian data that we decor-
relate using PCA (non-Gaussianity of the data is a requirement for the 

ICA algorithm to converge, but PCA does guarantee independence 
for Gaussian statistics). Figure 2b shows the estimated normalized 
Fisher information as a function of the step size of the finite-difference 
scheme; a clear plateau can be identified when the normalized Fisher 
information reaches unity, which means that the Fisher information 
is correctly estimated. We then generate correlated non-Gaussian 
data, which we process using ICA. Even for these complex statistics, 
we again observe a clear plateau when the normalized Fisher informa-
tion reaches unity, illustrating the broad applicability of the method.

Comparison of different ANN architectures
We now want to assess whether the precision of ANNs can approach 
the Cramér–Rao bound. For this purpose, we investigate various ANN 
architectures to evaluate their performance in estimating the target 
position from the measured images. We first collect a number of speckle 
patterns with the target located in the centre of the field of view, that is, 
θ = (0, 0). We then randomly translate these patterns in the transverse 
plane to generate an augmented dataset (Methods), with which we 
train different ANNs. Finally, we test our networks on unseen data, for 
which the target displayed by the DMD has been physically translated. 
In general, networks can retrieve the position θ of the target with pre-
cision that depends on many factors, including the optical thickness 
of the scattering media, the network architecture and the number of 
training epochs. To quantitatively evaluate the precision of the ANN 
predictions, we compute the expected value of the target coordinates 
based on the distribution provided by the ANN (this is achieved using 
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Fig. 3 | Comparison of different ANN architectures for the sample with  
optical thickness b = 4.2. The rows in a and b correspond to (from top to 
bottom) CNN, CoordConv, dense and densely connected CNN architectures.  
a, Two-dimensional histograms of the estimated target position. Different 
colours encode different ground-truth positions, and brightness encodes the  
probability. Nmax = 5,000 testing examples are used for each target position,  
and Nocc denotes the number of occurence for each estimated target position. 
The spread of the histograms characterizes the ANN precision. The columns 

show the progression of the prediction performance throughout the training 
process (after 5, 25 and 50 epochs, respectively). b, Evolution of the standard 
deviations (left column) and biases (right column) during training. The thick 
lines show the values averaged over all target the positions, and the shaded areas 
represent the interquartile range (third minus first quartile) calculated over  
25 positions. The black dashed lines in the left column represent the Cramér–Rao 
bound (CRB), calculated assuming that the estimators are unbiased.
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a softmax activation function, as described in the Methods). Subse-
quently, we construct individual histograms for each target position 
and use them to calculate the corresponding standard deviations σx  
and σy, which we use as a figure of merit for the ANN precision. In addi-
tion, we calculate the average deviations of the predicted coordinates 
from the true positions to characterize the ANN biases Bx and By.

The most straightforward ANN choice for image processing 
tasks is a CNN54. It has been shown, however, that ANNs with purely 
convolutional layers typically fail in the task of accurately tracking 
the coordinates of an object in an image55. This is due to the intrinsic 
translational invariance of the convolution operation, which leads to 
the loss of information about the feature position. To break the spatial 
invariance of the convolution operation, one possibility is to explicitly 
add coordinate meshes to the layers (CoordConv layers), which leads 
to faster convergence and lower bias compared with usual CNNs55. 
Although fully connected layers (dense neural networks) are usually 
harder to train, they can also be used in our case since the target of 
interest has a simple spatial structure. Finally, a CNN modification 
featuring structured skip connections was recently introduced56.  
Such connections form a structure akin to a dense layer, leading to  
the name densely connected CNNs, also known as ‘DenseNets’.

We compared the performance of these four classes of ANN.  
Before training, we performed hyperparameter tuning for each archi-
tecture (Supplementary Information, section 4.2). The best-performing 
ANN of each class was then trained and tested to locate the hidden 
target. The comparison of their performance is shown in Fig. 3. In 
Fig. 3a, we present the estimated target positions for the four dif-
ferent architectures along the training process, for the scattering  
sample with optical thickness b = 4.2. On these two-dimensional 
histograms, distinct ground-truth target positions are represented 
by different colours, and the brightness of each colour indicates the 
corresponding probability predicted by the ANN for that particular 
position. We observe that the choice of the ANN architecture does  
not seem to have a large influence over the estimated target posi-
tion. To quantitatively analyse the performance of the different ANN  
architectures, Fig. 3b shows the evolution of the standard deviations 
σx and σy (left column) and biases Bx and By (right column), calculated 
from the histograms in Fig. 3a. These values were obtained by averaging 
over statistical fluctuations of the ANN predictions.

As it turns out, the CNN approaches the (unbiased) Cramér–Rao 
bound, which here is equal to 5.0 µm for the scattering sample under 
consideration (b = 4.2). However, as evident from the large variability  
in the associated bias plot (Fig. 3b, first row, right column), the CNN 
develops a substantial bias. This issue can be resolved by including 
coordinate layers, which strongly mitigates the bias and leads to  
the same standard deviation as the usual CNN. In the case of the  
dense neural network, the observed bias is smaller, but the standard 
deviation is larger than that of CoordConv. The densely connected  
CNN architecture exhibits a very different behaviour: after only a  
few epochs, it gives low bias and approaches the Cramér–Rao bound. 
Nevertheless, this advantage comes with a trade-off: a large bias is 
observed later in the training process, requiring careful consider-
ation to stop the training at an appropriate point. Note that in the  
case of the CoordConv, dense neural network and densely connected 
CNN architectures, the Cramér–Rao bound is overpassed in the first 
few epochs; this occurs because the initial guess of these architectures 
is zero for each coordinate, resulting in standard deviations equal to 
zero. Estimations are then highly biased in the early stage of the train-
ing, which makes the unbiased Cramér–Rao bound calculated using 
equation (1) not relevant to the estimations performed during these 
first epochs.

Achievable precision for different scattering strengths
On the basis of the combination of minimal uncertainty and small bias 
(using the lowest mean squared error as a criterion, as described in 

Supplementary Information, section 4.3), we select CoordConv as 
our best architecture and study how it performs at different scatter-
ing strengths. As an illustration, Fig. 4a shows the ANN predictions 
in the absence of a scattering sample as well as for two other optical 
thicknesses (b = 2.5 and b = 5). Although the bias seems unaffected by 
the presence of the scattering sample, the variance of the estimated 
positions greatly increases for thick scattering samples. To quantita-
tively describe this behaviour, Fig. 4b shows the standard deviations 
achieved with the CoordConv architecture as a function of the optical 
thickness, obtained by training and testing this architecture 25 times 
with different random initial weights. These results also include a bias 
correction step, which is necessary to compare the ANN predictions 
with the unbiased Cramér–Rao bound (Supplementary Information, 
section 4.4).

As expected, the average standard deviation increases with the 
optical thickness, ranging from approximately 2.5 µm in the absence 
of a scattering sample up to 12.8 µm for a strongly scattering sample 
(b = 5). Remarkably, for small optical thicknesses, the standard deviation 
of the ANN comes very close to the Cramér–Rao bound (Fig. 4b, yellow 
circles), demonstrating that the CoordConv architecture can reach the 
ultimate precision limit. In some cases, it even seems that the Cramér–
Rao bound can even be overpassed; this artefact can be explained by 
the approximations made during the calculation of Fisher information 
(Supplementary Information, section 3.5) and by the finite size of the 
test dataset that was used to calculate the standard deviation of the ANN 
(Supplementary Information, section 4.5). For larger optical thicknesses, 
we observe a large variability in the ANN precision, as captured by the 
broader histograms shown in Fig. 4b. This variability comes essentially 
from the dependence of ANN precision on the target position. We indeed 
observe that off-central positions, which are less connected to the output 
of the network, are harder to predict than the central ones (Supplemen-
tary Information, section 4.6). Moreover, it is also plausible that with 
a larger number of trainable weights, the ANN would perform better 
at high optical thicknesses (Supplementary Information, section 4.2).

In Fig. 4b, we can also observe that the dependence of the  
Cramér–Rao bound on the optical thickness is approximately linear 
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between b = 0 and b = 5. Although no analytical expression is currently 
available to describe this behaviour, we suppose that it arises here  
as the result of a competition between shot noise and mechanical  
vibrations of the sample (mostly relevant for small optical thick-
nesses), as well as exponential attenuation of ballistic photons (mostly  
relevant for large optical thicknesses).

Finally, we also performed cross-tests of the models, which we 
trained and tested using datasets associated with different optical 
thicknesses and different object sizes. We observe that models trained 
on the strongest scattering dataset retain their ability to predict the 
target’s position in weakly scattering conditions, whereas the models 
trained on a weak scattering dataset become imprecise to estimate 
the target position in strongly scattering conditions (Supplementary 
Information, section 5.1). Moreover, the models seem to generalize  
relatively well for small variations in the object size and shape  
(Supplementary Information, section 5.2).

Discussion
We have shown that the Cramér–Rao inequality, which is the fundamen-
tal inequality that limits the precision of any estimator, also provides 
the ultimate benchmark for different ANN architectures trained to 
provide estimates on complex photonic systems. For the problem of 
estimating the position of a target behind a dynamic scattering sample, 
the performance of all architectures is similar, with a slight advantage 
for the CNN with CoordConv layers. We have then demonstrated that 
for different optical thicknesses, this architecture approaches the 
Cramér–Rao bound.

Calculating the Cramér–Rao bound entails accessing the Fisher 
information matrix describing the measured data. Although this matrix 
is typically derived from analytical models, here we presented a general 
model-free approach to approximate the Fisher information matrix of 
an unknown statistical distribution based on experimental data. Note 
that, in general, the Fisher information matrix depends on the true 
value of parameter θ, and therefore, the Cramér–Rao bound allows 
one to assess the local performance of ANNs around a given value in 
parameter space. Although here we studied a system with translational 
invariance for which the Fisher information does not depend on θ, 
our work could also serve as a building block to study more involved 
situations requiring the Fisher information to be calculated over the 
whole parameter space. Another perspective of our work is to analyse 
the achievable precision when large images need to be reconstructed. 
Although a pixel-based imaging strategy seems impractical here due 
to the large number of parameters typically involved57,58, finding a 
relevant sparse representation of these images appears to be a prom-
ising strategy59,60. Our analysis performed with two parameters (the 
transverse coordinates of the target), thus, paves the way towards the 
analysis of more complex imaging scenarios in which many parameters 
need to be estimated.

The formalism inherently includes all the physical effects that 
affect the precision with which parameter values can be estimated. 
In our experiments, the statistics of noise was of fundamentally dif-
ferent origin depending on the scattering strength. Indeed, in free 
space, the precision was essentially limited by shot noise as well as by 
mechanical vibrations of the experimental setup. By contrast, in the 
presence of complex scattering media, the precision was limited by 
the occurrence of random scattering events in the media. Yet, we have 
shown that the Cramér–Rao bound can be successfully calculated 
regardless of the physical origin of the noise, and without any analysis 
of the speckle correlations characterizing our scattering systems61–63. 
In fact, the key quantity is rather the likelihood function, which is 
assessed directly from the measured experimental data and without 
any assumption on the data statistics. Moreover, all prior information 
is naturally included in the parameterization of the system. As such, 
even far-field super-resolution effects are inherently described by 
the formalism.

The method itself is very general and can be used to assess 
whether any ANN is optimal with respect to the task it was designed 
for. We expect our approach to be especially useful to drive algorithmic 
developments in the field of computational imaging5. Major poten-
tial applications include imaging through multimode fibres64 and 
through complex scattering tissues8, for instance, for in vivo neuronal 
imaging65,66.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41566-025-01657-6.
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Methods
Experimental setup
The setup used in our experiments is shown in Supplementary Infor-
mation, section 1. A laser beam from a diode (Thorlabs DJ532-40) is 
expanded to a diameter of 2 mm before entering the optical system. 
Lens L2 forms the image of the front surface of the scattering sample 
on a scientific complementary metal–oxide–semiconductor camera 
(Andor Zyla 5.5). Lens L1 is placed in such a way that the input beam 
after L2 is collimated. Using the lens L3 and the microscope objective 
MO (Olympus Plan N 10X), we image the DMD (Vialux V-7001; pixel 
size, 13.7 µm) onto the back surface of the scattering sample, as well 
as forming the illumination area of 8-mm diameter on the DMD. The 
resulting magnification of the optical system formed by L2, MO and 
L3 is 2.9. The DMD is oriented such that the surface of the ‘on’ pixels is 
perpendicular to the optical axis of the imaging system, that is, these 
pixels back-reflect the incident light towards the sample. By contrast, 
the surface of the ‘off’ pixels is tilted such that light reflected by these 
pixels escapes the optical system, because it goes outside the aperture 
of lens L3. Note that in this configuration, the DMD is tilted by a few 
degrees in the y direction, which leads to a slight defocus for different 
y positions.

As a scattering sample, we use a suspension of TiO2 nanoparti-
cles (Sigma-Aldrich) in glycerol, which is pumped through the flow 
cuvette F (Helma, 6.2 µl; optical path length, 100 µm) using the pressure 
chamber and compressor at a rate of around 7 ml h–1. With this setup, 
the measured decorrelation time is around 30 ms (Supplementary 
Information, section 1). We chose the time interval between two suc-
cessive frames (33.3 ms) so that the two successive frames are uncor-
related, and we chose the exposure time (200 µs) so that the speckle 
is stable during the measurement of one frame. We use a DMD area 
of 5 × 5 pixels (68.5 µm × 68.5 µm) as a model dynamic target and we 
record a sequence of reflected speckle patterns with different target 
positions, whereas the scattering liquid provides different realizations 
of the optical disorder for each speckle. With our optical setup, the 
DMD is directly imaged onto the sample plane, with a magnification 
factor of 0.18.

Data collection
For each optical thickness, a total of 5 × 105 images composed of 
128 × 128 pixels (1 pixel corresponding to an area of 6.5 µm2) were taken 
in the following sequence: B, S, B, D, B, S, B, D…, where B represents 
the background speckle measured with all the DMD pixels in the ‘off’ 
position (that is, none of the measured light comes from the DMD),  
S represents the static target dataset (with the target fixed at the  
centre of the field of view) and D represents the dynamic target dataset 
(with the target moving in a snake pattern across a 5 × 5 grid of positions 
separated by two DMD pixels both vertically and horizontally).

The collected background images were used to subtract the slowly 
changing speckle pattern occurring due to TiO2 particles attaching to 
the walls of the cuvette. The time series of each pixel of the background 
dataset was filtered using a Savitzky–Golay filter (5,000-sample window  
or approximately 170 s) to form a dynamic background signal, which 
is then subtracted from the consecutive static and dynamic data-
set images. Note that the subtraction of the slowly varying average 
background occurs on a timescale (170 s) that is much larger than the 
decorrelation time (30 ms), which means that background subtraction 
cannot allow us to isolate the ballistic light. We observed that without 
background subtraction, ANNs perform much worse: indeed, since we 
use a data augmentation procedure, ANNs incorrectly learn to rely on 
the numerically shifted background features during training.

The static dataset images were numerically shifted both horizon-
tally and vertically by a random number of pixels (extracted from a uni-
form distribution) within the interval [–40, 40] pixels. Both static and 
dynamic datasets were then resized to obtain 32 × 32 images by pixel 
binning and were then normalized from 0 to 1 by dividing each image 

by its maximum intensity value. As a result of the procedure above, we 
obtained a training dataset of 1.25 × 105 images (32 × 32 pixels) and a 
testing dataset of the same size with 25 target positions. Note that the 
size of the testing dataset has been chosen to be sufficiently large so 
that we could assess the variance in ANN predictions (5,000 patterns 
for each of the 25 different positions of the target).

ANN structure and optimization
We have observed that for the task of predicting the target coordinates 
on a discrete grid, a classification approach works better than a regres-
sion approach. For each architecture, the target’s vertical and horizon-
tal coordinates were one-hot encoded into vectors of Nh length, which 
were then merged into a 2Nh-length vector that served as the ground 
truth for the network. We used categorical cross-entropy loss and 
softmax activation for the final layer, enabling the network to produce 
the probability density of the target position. The final prediction for 
the target position was taken as the expected value of the horizontal 
and vertical position distributions computed from a single frame in the 
test dataset. For each architecture, we performed a hyperparameter 
grid search. The optimization space for each model was selected in 
such a way that the maximal number of parameters would be simi-
lar for different network architectures. The details about the search 
parameter space and the optimal hyperparameter values used in the  
training can be found in Supplementary Information, section 4.2.

The CoordConv architecture is found to be the optimal archi-
tecture for our task. Although the bias it develops is small, it is still 
non-negligible. We correct this bias by splitting a part of a training set, 
making predictions from it and comparing it with the ground truth. 
We fit a two-dimensional spline function to the set of points for which 
we can infer the bias in that way so that this function covers the whole 
field of view (Supplementary Information, section 4.4).

Numerical simulations
To generate the Gaussian dataset, we sample 125,000 data points 
from a multidimensional Gaussian distribution with independent 
and identically distributed entries, number of dimensions Ndim = 50, 
mean value µ = θ and standard deviation σ = 1. To introduce correla-
tions, we apply a matrix consisting of ones along the main diagonal 
and the first off-diagonals to every data point. For the image data, 
this would correspond to neighbouring pixels being strongly corre-
lated but distant pixels being independent. We then estimate the 
Fisher information of this correlated dataset for the parameter θ, 
which is known analytically to be 𝒥𝒥 (θ) = Ndim (ref. 45). To generate the 
non-Gaussian dataset, we repeat the procedure above with the dif-
ference that we apply an additional nonlinear transformation f(x) = x3 
to each component of the correlated random variable. We choose 
this transformation as it preserves the Fisher information (this can 
be demonstrated, e.g., using singular value decomposition). Hence, 
the value of the Fisher information is still 𝒥𝒥 (θ) = Ndim, and we can verify 
whether our method returns an estimated Fisher information that is 
close to the true Fisher information.

In Fig. 2b,c (insets), we show the Gaussian and non-Gaussian dis-
tributions, respectively, by showing point clouds of two generic com-
ponents X1 and X2 of the 50-dimensional random variables Xk. Although 
the Gaussian distribution has an elliptical structure due to correlations, 
the non-Gaussian distribution clearly has a more complex shape. The 
blue curves in Fig. 2b,c correspond to the dependence of the estimator 
of the total Fisher information ∑k

̂𝒥𝒥k  on the step size Δθ of the 
finite-difference scheme for the Gaussian data and non-Gaussian data, 
respectively. These values are normalized by the true value of the Fisher 
information (known analytically), such that a value of 1 corresponds 
to a perfectly accurate estimate.

In these simulations, the optimal value of the step size Δθthr is 
selected by choosing the value at which the fluctuations of the second 
derivative of the curve become greater than those for large step sizes 
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by a factor of 10 (Supplementary Information, section 3.4). We observe 
that in both cases, the estimated Fisher information evaluated at this 
step size is close to the true Fisher information.
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