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Recent experiments have searched for evidence of the impact of noninertial motion on the entanglement of
particles. The success of these endeavors has been hindered by the fact that such tests were performed within
spatial scales that were only “local” when compared to the spatial scales over which the noninertial motion
was taking place. We propose a Sagnac-like interferometer that, by challenging such bottlenecks, is able to
achieve entangled states through a mechanism induced by the mechanical rotation of a photonic interferometer.
The resulting states violate the Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) inequality all the way up to
the Tsirelson bound, thus signaling strong quantum nonlocality. Furthermore, we show that the Bell-CHSH
inequality remains violated even without using any form of postselection up to the value 1 + +/2. Our results
demonstrate that mechanical rotation can be thought of as resource for controlling quantum nonlocality with
implications also for recent proposals for experiments that can probe the quantum nature of curved spacetimes

and noninertial motion.
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I. INTRODUCTION

The seminal work of J. S. Bell allowed to infer the inherent
incompatibility of quantum mechanics with the (classically
acceptable) assumption of local realism posed by Einstein,
Podolsky, and Rosen [1,2]. The falsification of a Bell in-
equality, which would be fully satisfied by any local realistic
theory, has been reported in countless experiments [3—11], and
recognized with the 2022 Nobel Prize in Physics.

Independently, questions about relativity led Sagnac to es-
tablish a now widespread method for measuring rotational
motion using optical interferometry [12,13]. Two counter-
propagating signals acquire a phase difference proportional
to the angular frequency of rotation [14—17]. This insight led
to the development of the ring laser [18] and fiber-optical
gyroscopes [19,20], with the current state of the art achieving
sub-shot-noise sensitivities [21]. The Sagnac effect has been
shown to induce interference at the level of quantum systems,
with experimental implementations in matter-wave interfer-
ometry [17] and single-photon platforms [22].

More recently, photonic technologies have enabled the ex-
ploration of rotation-induced quantum phenomena with two-
photon experiments. Polarization-entangled photon pairs were
shown to be robust against a 30 x g acceleration achieved
on a rotating centrifuge [23]. Using a Hong-Ou-Mandel
interferometer on a rotating platform, it was found that
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low-frequency mechanical rotations affect bunching statistics
[24]. Super resolution and Sagnac phase sensitivity beyond
the shot-noise limit was achieved in Ref. [25] using path-
entangled NOON states, and milliradian phase resolution was
achieved in Ref. [26], allowing the measurement of the Earth’s
angular frequency of ~10 uHz. Furthermore, it was suggested
that photonic entanglement can be revealed or concealed us-
ing noninertial motion accessible to current experiments [27].
Using a Hong-Ou-Mandel interferometer with nested arms,
it was demonstrated that photonic behavior can change from
bunching to antibunching (i.e., from bosonic to fermionic)
solely due to mechanical rotations [28]. Moreover, it was
shown that rotational motion can change the phase of polariza-
tion entangled states enabling transitioning between pairs of
Bell states [29]. Crucially, these experiments involve quantum
states that are entangled prior to rotation and rotation is only
used to modify, probe, or enhance existing quantum features.

A significant conceptual step further is to demonstrate
the actual generation of entanglement using noninertial mo-
tion. The approach proposed in Ref. [30] made use of
a multipath Sagnac interferometer to achieve a maximally
entangled path-polarization state of a single photon. Such
state would be suitable for quantum noncontextuality tests
aimed at ascertaining whether observables can be assigned
preexisting values prior to measurements [31]. In princi-
ple, the generated entanglement could also be transferred
to two spatially separated physical systems [32], but the
experimental demonstration of such procedures remains ex-
perimentally challenging [33,34]. It is thus not immediately
obvious whether the single-photon scheme proposed in Ref.
[30] would allow to unambiguously demonstrate the genera-
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FIG. 1. (a) Photonic setting for the rotation-controlled generation of quantum nonlocal states of polarization. Two photons are initially
prepared in the separable state |HV') and injected into the setup. The circulators, denoted by C, first send the photons into a Sagnac loop, and
then redirect them toward two individual detection stages (only the directional paths, 1 to 2 and 2 to 3, are allowed by the circulators). As
the photons entering the Sagnac loop through BS are initially prepared in orthogonal polarization states, they do not interact at any point via
electromagnetic couplings. We measure the polarization of the photons with a standard Bell detection scheme. (b) Theoretical prediction of the
violation of the Bell-CHSH inequality. With Postselection refers to the case where one photon is measured using the setup at the top (managed
by Alice) and one photon is measured with the setup on the right (managed by Bob). Without Postselection refers to the case where all the
photons are considered in the analysis, which includes the detection of one photon by Alice and one photon by Bob as well as of both photons
by either Alice or Bob. For concreteness, we have set the photon wavelength to A = 1 um (w = 27 ¢/A) and the interferometric area to ~7.8 m?
(e.g., 10 loops of fiber with radius » = 0.5 m with a total length of ~31.5 m). We predict that a violation (|S| > 2) occurs periodically with the
rotation frequency as stated by Eq. (13). The maximum violation is first achieved for Qg.; ~ 0.4 Hz, and the condition |S| > 2 is achieved in

the interval 2 € 0.4 & 0.1 Hz (see Appendix A for more details).

tion of genuine quantum (nonlocal) entanglement as opposed
to local entanglement.

In a different context, recent theoretical studies in quantum
gravity [35,36] have proposed schemes where the genera-
tion of two-particle nonlocal entanglement can be used to
witness the quantumness of the gravitational interaction me-
diator. These proposals fit within a more general framework
of studies where researchers pursue methodologies to test the
quantumness or nonclassicality of the involved parties [37],
regardless of the type of interaction (see also results in op-
tomechanics and biophotonics [38,39]).

Inspired by these two-party schemes, in this work, we
propose an experimentally viable scheme—fully accessible
to current photonic technology—in which rotation itself is
the mechanism that generates nonlocal entanglement between
two initially unentangled photons. This marks a shift, from
manipulating the entanglement to demonstrating its rotation-
ally induced creation. Our scheme consists of a single Sagnac
fiber loop, linear optics elements, photon-pair sources, and a
Bell-test detection setup, all placed on a rotating platform.
We find that an initially separable two-photon state can be
transformed into a maximally entangled state of polarization
that violates significantly the Bell-Clauser-Horne-Shimony-
Holt (Bell-CHSH) inequality [40] as a function of the angular
frequency of rotation, obtaining a simple formula for the
frequency required to saturate Tsirelson’s bound [41]. Further-
more, we show that even without any form of postselection, the
Bell-CHSH inequality remains violated for the same angular
frequencies of rotation, achieving the maximum value 1 + V2
[42]. We conclude by briefly discussing the interpretation of

the uncovered link between mechanical motion and quantum
nonlocality.

II. PROPOSED SCHEME

We consider the configuration shown in Fig. 1(a), where
two single photons are propagating through the system. The
full setup involves a pulsed laser source (not shown), pumping
two spatially separated type-I nonlinear crystals, each produc-
ing photon pairs via spontaneous parametric down-conversion
(SPDC). One photon from each pair is detected to herald the
presence of its twin, resulting in two heralded single pho-
tons that are mutually uncorrelated, as they originate from
independent SPDC processes. These signals are first directed
into a Sagnac loop through circulators and a beam splitter
(BS), and then toward two spatially separated Bell-detection
apparatuses. We assume that two independent photons are
initially prepared in the separable state:

lyi) = a,bi,10y = |H V), (1

where ay (by) denotes horizontal H (vertical V) polarization
mode.

As the two photons enter the Sagnac loop through BS, the
state changes according to a beam-splitter transformation into

i) — |yn) = L@}, + ibj)a, + b}))0), 2)

where a (b) denoteS the corotating (counter-rotating) mode.
The effect of mechanical rotation is to introduce Sagnac
phases with a sign depending on the sense of motion of the

033197-2



GENERATING QUANTUM NONLOCAL ENTANGLEMENT ...

PHYSICAL REVIEW RESEARCH 7, 033197 (2025)

particular mode [27]. From Eq. (2), we thus find
1r .¢ - b A . N
) — |1p2):5[el%a;ﬁie*’%b;,][ie’%5+e*'?b;]|o>, 3)

where the phase factors have been introduced to account for
the relative phase acquired by the counterpropagating modes.
Irrespective of the medium, shape of the interferometer or the
location of the center of rotation, the Sagnac phase is given
by [14]

4A0R
=, @)

¢ =

where A is the interferometer area, c is the speed of light in
vacuum, w = 2mwc/A is the angular frequency of the photons
(A is the photon wavelength), Q2 =27 f, and f is the me-
chanical frequency of the rotating platform. Moreover, any
phase affecting differently the two polarizations would simply
factor out of Eq. (3). Similarly, if there is some random noise
affecting the corotating path, then the same noise will also
affect the counter-rotating path, again factoring out of Eq. (3).
Hence, classical phase delays arising through experimental
imperfections will not change the final result. To generate
differential phases depending on the direction of rotation, the
only plausible mechanism is the Sagnac effect.

As the photons exit the central loop through the BS, we
apply the inverse beam-splitter transformation to Eq. (3),
giving us

[Vr2) = [Yior)

1 . ~ . ~
= Z[(e’d’/z(—ia;, +bi) + ie7**(aj, — ibl)

c

x (i (—ia, + bl)) + e~ (@l, — ib))1|0).  (5)
After rearranging the terms in Eq. (5), we find
[Yior) =l\/3 + cos(2¢)|Vtay) + Siﬂlwunfav% (6)
2 V2

where we have introduced the normalized states

V) = (cosp — D)af,bl,  (cosp + 1)b},a), o @
o V3 F cos(2o) V3 F cos(2o) ’
[Yuntar) = —=Laf;a, — b},5;,110). (8)

V2

|Yay) Tepresents the case when each pair of detectors detects
one photon, i.e., Alice detects mode a and Bob detects mode
b or vice versa, while |sy) represents the case when both
photons arrive at the same pair of detectors, i.e., either both
to Alice or both to Bob. As we want to compute quantum
correlations between Alice and Bob we will refer to |, ) and
[Vuntav) as the favorable and unfavorable state, respectively.

II1. VIOLATION OF THE BELL-CHSH INEQUALITY

To quantify the degree of generated nonlocality we can
compute the Bell-CHSH function S [40]

SZE(a,b)—E(a,b/)+E(a/,b)+E(a,,b/), (9)
where the quantum correlations are given by

E(,u) = (Y|ABulY), (10)

[y) is the state of the system, and A, and B, correspond to the
measurements performed by Alice and Bob, respectively (v =
a,a’ and u = b, b’ denote unit vectors parametrizing the mea-
surement operators). The four terms appearing in Eq. (9) are
associated with four different joint measurements performed
by Alice and Bob. Local realism enforces the Bell-CHSH
inequality |S| < 2. However, as we will see, suitable choices
of the angular frequency of rotation, encoded in the phase ¢ in
Eq. (6), allow to violate such constraint. We show below that
the Bell-CHSH inequality is violated up to the value |S| =
1 4+ +/2 by considering the total state in Eq. (6), establishing
the phenomena of rotationally induced quantum nonlocality
(Sec. IIT A). Furthermore, we show that Tsirelson’s bound
IS| = 24/2 can be achieved by postselecting coincidences at
the detectors (Sec. 111 B).

A. Nonlocality without postselection

We define the observables A, and B, by prescribing how
they act on the basis states of our Hilbert space (we recall
that observables, which are linear maps, can always be de-
fined in this way). The total Hilbert space, and in particular
its basis, can be read out from the total final state |yo) in
Egs. (6)—(8). On the Hilbert subspace spanned by &;IIA)I, |0) and
E;&‘T/ |0) (i.e., the basis states of the favorable subspace), we
defineA, =a-oand B, = b - 0, where 0 = (o, oy, 0;) is the
vector of the Pauli matrices. In order to achieve the highest
violation of the Bell test, we choose the vectors a = (1, 0, 0),
a =(0,1,0,b=(1,1,0)/+2,and b = (~1,1,0)/+/2. On
the Hilbert subspace spanned by &L&;lO) and E;EHO) (i.e.,
the basis states of the unfavorable subspace), we define A, = |
and B, = [, where [ denotes the identity operator [42].

To compute the Bell-CHSH value, we consider the to-
tal state without any postselection; i.e., we set |¥) = Vo).
Inserting Eq. (6) into Eq. (9), we eventually find

S = (1 + ﬁ) sin®(¢). (11)

In particular, by setting ¢ = /2 + kn (k € Z), the state in
Eq (6) reduces to |wl0t) - %(Wfa” + |WUnfav>)’ i-e-,

Wot) = s[—ayby, + bj,al, + aj,al, — bl,b110),  (12)

and we achieve the maximum violation |S| = 1 4+ /2. This
occurs when the mechanical frequency €2 takes the values

et
Q= —Rk+1), (ke 2). (13)
8Aw

Here, k < 0 (k > 0) would correspond to an (anti)clockwise
sense of rotation.

The experimentally measurable Bell-CHSH correlation
will be obtained by repeating the experiment with a large
number of initial photon pairs in order to gather enough statis-
tics. In Fig. 1(b), we plot the Bell-CHSH function for a set of
values of the relevant physical parameters that are well within
reach of existing photonic technology with previous experi-
ments already achieving the required sensitivities [23-29].

Importantly, the Bell-CHSH violation depends critically
only on the mechanical rotation. We recall that two initial
states in Eq. (1) consist of photons that are in orthogonal polar-
ization modes, and hence do not interact at the beam splitter or
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via any electromagnetic interaction, and that no postselection
has been performed on the total final state in Eq. (6). The
results captured by Eq. (9) thus depend critically only on
the angular frequency of rotation 2: by tuning its value we
can generate quantum nonlocality, while without mechanical
rotation no quantum nonlocality can be established.

B. Tsirelson’s bound with postselection

We now consider the state conditional on the postselection
of the events that provide coincidences at the detectors, i.e.,
quantum correlations between Alice and Bob, where we dis-
regard the events arising from the unfavorable state |{rypfay) in
Eq. (8). We discuss the probability of coincidence detection in
Appendix B, which remains greater than 50%, and hence does
not pose a severe limitation. We can rewrite the remaining
favorable state |,y) defined in Eq. (7) as

cos(¢) + 1 | cos(¢p) — 1
3 4 cos(2¢) 3+ cos(2¢)

where we have introduced the commonly used notation
al,bl|0y = |H V) and a},b},10) = |V H).

We first note that for ¢ = 0 (corresponding to the case
without mechanical rotation) we always remain in the initial
state |H V'), which is separable. More generally, we note that
for ¢ = m k (k € Z) we either remain in the initial state |H V')
( k even) or transform into the flipped polarization state |V H)
(k odd). However, for any other value of ¢ we find that
Eq. (14) will be in an entangled state. In particular, for ¢ =
n/2+mk (ke Z) Eq. (14) transforms into the maximally
entangled Bell state

V) = J5(IHV) =V H)), s)

\VH), (14)

W/fav) = V> +

which is usually denoted as the | ™) state.
To compute the Bell-CHSH value, we set ) = [yy) in
Eq. (9) to obtain the value

02
=47 sin”(¢)

3 4+ cos(2¢)’

In particular, as stated in Eq. (15), by setting ¢ = /2 +
kr (k € Z), the state in Eq. (14) reduces to the Bell state [ ™)
and we achieve the notorious Tsirelson’s bound |S| = 2+/2
[41]. In Fig. 1(b), we plot the Bell-CHSH function defined
in Eq. (16) for the same set of values as for the case without
postselection to ease the comparison.

Saturating Tsirelson’s bound depends critically on two
steps: (1) on the postselection step from Eq. (6) to (14),
where we have discarded the unfavorable state, and (2) on a
nonzero rotationally induced phase ¢ # 0, which arises only
for nonzero frequencies of rotation 2 # 0. The postselection
step is, however, not enough to induce entanglement in the
absence of mechanical rotation as discussed above for the case
¢ = 0. Furthermore, even without any form postselection we
have shown that the Bell-CHSH inequality remains violated
(see Sec. IIT A).

(16)

IV. DISCUSSION

We have proposed a method for the controlled genera-
tion of quantum nonlocality using mechanical rotation that

achieves the map

a;,b},10) — L[(cosp — D)aj,bi, + (cosp + 1)b},al,

+ sing (a,al, — bl,b7)110). a17)
The minimalist derivation is fully contained in Egs. (1)—(8),
assuming only the Sagnac phase and the form of the beam-
splitter transformation. By controlling the angular frequency
of the mechanical rotation, €2, and hence the corresponding
Sagnac phase, ¢ = ¢(£2), we have shown that we can prepare
either separable or nonlocally entangled final states.

The map in Eq. (17) satisfies a number of desiderata: (1)
For ¢ = 0, the transformation reduces to the identity map, i.e.,
M = . In other words, without mechanical rotation, the state
remains invariant (and classical). (2) For ¢ =k (k € 7),
the transformation in Eq. (17) is either the identity operation
(even k) or induces a polarization flip (odd k). The latter
case shows that mechanical rotation can be used to swap the
polarization state of photon pairs. (3) For ¢ = 2k + 1) /2
(k € 7), we obtain the state in Eq. (12), which is predicted
to violate the Bell-CHSH inequality. The first line of Eq. (17)
(corresponding to Alice and Bob detecting each one photon)
reduces to the Bell state |W™), which is expected to induce
a maximal violation of the Bell-CHSH inequality given by
the Tsirelson’s bound [41]. However, even in absence of any
form of postselection, the total final state in Eq. (17) produces
a violation of the Bell-CHSH inequality up to the value S =
14+ V2 [42].

The scheme is also robust against imperfections and noise
due to the inherent protection characteristic of the Sagnac
loop. Suppose some unwanted phases would be accumulating
depending on the polarization H, V; this would contribute
only to a global phase in Eq. (3), but no measurable differ-
ential phase would be generated. Similarly, any other random
phase affecting the corotating path will automatically affect
also the counter-rotating path, thus factoring out without af-
fecting the final state. As shown in Fig. 1(b), the experimental
parameters required to test the maximum violation of the
Bell-CHSH inequality can be achieved with current photonic
technologies by adaptation of previous experimental schemes
[23-29]. As such, we do not expect any fundamental or
technical issue in the implementation of this proposal (see
Appendix C for the analysis of background noise, dark counts,
and detector inefficiencies).

A further benefit of the proposed scheme is also that it does
not rely on specific models, but rather on the well-established
Bell-CHSH test. The violation arises only when we tune the
mechanical frequency of rotation to the interval centered on
the value Qg1 Hence, nonzero mechanical rotation is a criti-
cal factor for generating nonlocality in this setup; i.e., we can
legitimately speak of rotationally induced nonlocality.

The question of how to interpret the experiment is of course
nonetheless interesting. In this work, we have provided a sim-
ple yet very effective and powerful theoretical interpretation
only relying on the Sagnac phase. While here we have not
shown this, the Sagnac phase is of intrinsic relativistic origin.
Evidence of such nature stems from Eq. (4), which depends
on the speed of light in vacuum and not on that of photons in
a medium, suggesting that its origin is related to the spacetime
metric (we refer the interested reader to the reviews [14-17]).

033197-4



GENERATING QUANTUM NONLOCAL ENTANGLEMENT ...

PHYSICAL REVIEW RESEARCH 7, 033197 (2025)

However, more formal interpretations within quantum theory
in curved space [27], broader quantum field theoretic frame-
work [43], or a general relativistic context [44-47] are also
possible. The possibility to further such thoughts and interpret
the spacetime metric as in a superposition, along the lines of
Ref. [30], thus reaching out to the domain of quantum refer-
ence [48,49] frames, will be the topic of further investigations.
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APPENDIX A: ANGULAR VELOCITY FLUCTUATIONS

The presented scheme is robust with respect to angular
velocity fluctuations, §€2, of the rotating platform. For ex-
ample, let us focus on the region of the first peak shown
in Fig. 1, where ¢ € [0, 7]. We can then readily estimate
the minimum (maximum) angular frequency 2_ (€2;) at the
boundaries of the interval, where we have a violation of
the Bell inequality, i.e., determined by the condition |S| > 2.
We define the maximum allowed angular velocity fluctuations
as §Q2 = Q4 — Qpey (or equivalently §Q2 = Qg — Q2 given
the the symmetric shape of the peak), such that for angular
frequencies in the interval

Qe QBell + 39, (A])

we have a violation of the Bell inequality. From Eqs. (4) and
(11) [or from Egs. (4) and (16)], we find that the maximum
allowed angular velocity fluctuations are given by

2 2—1
62 = £ arctan V2
4Aw

(A2)

In particular, for the parameters listed in Fig. 1 we find the
value 62 = 27 x 0.1Hz, which does not pose a challenging
requirement for the rotation control of low-frequency rotating
platforms [24,28]. A similar analysis on the sensitivity of
the Bell-CHSH violation can be performed also for the other
peaks at higher (k > 0) or negative (k < 0) values of Qg

APPENDIX B: COINCIDENCE DETECTION

The detection method considered here relies on four-
photon coincidences: Two photon pairs are generated by two
different SPDC processes. One photon from each pair is her-
alded [not shown in Fig. 1(a)], ensuring that the other photon
propagates within the system. In this frame, the loss of one

photon does not affect the measurement; it will only result in
longer acquisition times. In the following discussion, we do
not explicitly include the heralding process; all references to
two-photon detection or coincidence events are made under
the implicit assumption that the corresponding heralded pho-
tons have been successfully detected.

A further point needs to be made: in the case with posts-
election, not all two-photons detections produce an increase
in the number of counts; only when the top-left pair of detec-
tors (Alice) detects one photon and the bottom-right pair of
detectors (Bob) detects one photon we are able to update the
experimental value of S defined in Eq. (16) [see Fig. 1(a)]—
we need a coincidence measurement between Alice and Bob.
We can find the resulting reduction in the number of counts
by noting that the numerical prefactors of Eqs. (6) and (7)
give the associated probability amplitudes. Hence, squaring
and summing the amplitudes of the terms ath' we find
the probability of detection (cos?(¢)+ 1)/2, which gives a
50% reduction in the statistics at 2 = Qpg.;. The case without
postselection is unaffected by this reduction in the probability
of detection as all the photons are taken into account.

APPENDIX C: EFFECT OF NOISE ON BELL-CHSH TEST

Noise in the form of background noise, dark counts, and
detector inefficiencies can significantly affect the quantum
correlations relevant to the Bell-CHSH test. In this section,
we quantitatively examine the effect of such noise on the
Bell-CHSH test and consequently on the extent of violation
of local realism. Such investigations are of paramount impor-
tance when trying to assess the feasibility of our scheme for
experimental implementation. One possible noise source is a
passive coupling mechanism caused by backscattering from
the cavity mirrors, in particular the BS surfaces in our setup.
While such coupling could, in principle, lead to spurious mode
interactions or background contributions, it is not expected
to play a significant role in our case. The single photons do
not populate a well-defined intracavity mode, and therefore
do not establish conditions for mode locking through mirror-
induced feedback. Furthermore, due to the low generation
efficiencies, as well as the finite spectral bandwidth of the
photons, their coherence length remains short. This prevents
significant temporal or spatial overlap between corotating and
counter-rotating photon wave packets, effectively suppressing
coherent interference effects arising from backscattering.

Low pair-generation efficiencies also play a crucial role
in suppressing unwanted multipair emission events, which
can introduce noise into the measurement outcomes. Similar
to what occurs in static (nonrotating) measurements, such
multipair events contribute to a small but nonnegligible back-
ground. However, their impact can be minimized by operating
at low pump powers, reducing the probability of higher-order
emissions.

A separate treatment is necessary when considering a noise
model in which the subsystems associated with Alice and
Bob are subject to independent error processes with noise
error probability €4 and €, respectively [50]. To simplify the
presentation and estimate the magnitude of the effects, we
here assume that the noise error probability of Alice’s sub-
system, €4, is the same as Bob’s, €p (€4 = €p = €), and that
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FIG. 2. Variation of the Bell-CHSH parameter S with frequency and error probability €. (a) Case with postselection. (b) Case without
postselection. We use same values for wavelength A and interferometric area as used in Fig. 1.

0 < € < 1. Hence, we can write the total system statistical
operator p as

p=(1-26)pap+e(pa®3%)+e(t® pp). (ChH

where pap = |¥3) (Y3, with |yr3) the interferometer output
state given by Eq. (6), while p4 = trg(|¥3) (¥3]) and pg =
tra(|¥3) (¥3]) are the reduced states of Alice’s and Bob’s
subsystem. We use p to compute the Bell-CHSH function S
from Eq. (9) for two cases: without postselection (Sec. III A)
and with postselection (Sec. III B).

To evaluate E(a, b) in S, we use

E(a,b) = tr(0 p), (C2)

where O is equal to (a - 0) ® (b - o) for the case with posts-
election (we have one photon for each subsystem). However,
for the case without postselection, we use the approach sug-
gested in Ref. [42]: Here, Ois equalto (a-0)® (b- o) when
each subsystem receives one photon, while O is equal to
identity for the other cases when Alice or Bob’s subsystem
receive more than one photon each.

Using this formalism, for the case with postselection,
we get

i 2
sin” ¢
S=010-26)4vV2———. C3
( €) [3 + cos2¢ €3
Similarly for the case without postselection, we get
S =(1—=2€)1+/2)sin’ ¢ + esin’ . (C4)

The variation of S with frequency and the error probability
€ is shown in Fig. 2. As expected, for the case with postse-
lection, we see a violation of the Bell-CHSH inequality for a
higher error probability compared to the case without postse-
lection. Nevertheless, it is worth noticing that the Bell-CHSH
parameter can exceed the threshold value S = 2 in both cases.
This is due to the fact that S measures the nonlocality of the
state and hence that our final state is indeed nonlocal, even if
not maximally entangled.
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